

Progress on CTEQ-TEA PDFs

Jun Gao

Institute of nuclear and particle physics, Shanghai Jiao Tong University

On behalf of CTEQ-TEA collaboration

25th International Workshop on DIS and Related Topics
University of Birmingham, UK
April. 6, 2017

CTEQ-TEA working group

- ◆ CTEQ-Tung et al. (TEA), in memory of Prof. Wu-Ki Tung, who established CTEQ Collaboration in early 90's
 - Michigan State University: J. Huston, J. Pumplin, D. Stump, C. Schmidt, J. Winter, C.-P. Yuan
 - Southern Methodist University: T.-J. Hou, P. Nadolsky, B. T. Wang, K. P. Xie
 - **Xinjiang University**: S. Dulat
 - Shanghai Jiao Tong University: J. Gao
 - ★ University of Manchester/Kennesaw State: M. Guzzi

http://hep.pa.msu.edu/cteq/public/index.html

CT14 parton distribution functions

This page provides numerical table files for the computation of CT14 leading order (LO), next-to-leading order (NLO) and next-to-next-to-leading order (NNLO) parton distribution functions. They can be interpolated with the help of a **NEW standalone Fortran interface** and **demonstration program**, as well as the tables with interpolated values of the QCD coupling alpha_s and PDFs.

CT14 Parton distributions

♦ Last major release on general-purpose PDFs, CT14 NNLO/NLO sets including alternative $α_s$ series and n_f =3, 4, 6 [1506.07443]

- □ D0 W-electron asymmetry data superseded by the new one with full luminosity; combined HERA charm production, H1 FL data in NC DIS
- early LHC Run I data on W/Z charged lepton rapidity and asymmetry; inclusive jet production from ATLAS and CMS
- more flexible parametrization for gluon, d/u at large-x, both d/u and dbar/ubar at small-x, 28 eigenvectors comparing to 25 for CT10

CT14 remains as our official sets for general purpose use

Beyond CT14 nominal sets

 Progress have been made on studies of specialized sets, effects of new HERA data with CT14 setups, and towards the new CT17 family

- **CT14 QEDinc PDFs**, models and constraints on photon PDFs, [1509.02905]
- ★ CT14 MC PDFs, replicas for certain applications (talk by J. Gao), [1607.06066]
- ★ CT14 HERA2 PDFs, effects of combined HERA1+2 data, [1609.07968]
- CT14 IC PDFs, fitted charm component (talk by M. Guzzi), [1704.xxxxx]
- CT17 preliminary fits and related, [17xx.xxxx]

CT17p — data to be included

- ◆ Previous LHC and HERA 1 data included in CT14 will be superseded by updated Run 1 and HERA 1+2 data; adding new LHC data, especially on Z boson p_T and top quark differential distributions
 - Combined HERA1+2 DIS [1506.06042] update
 - LHCb 7 TeV Z, W muon rapidity dist. [1505.07024] update
 - LHCb 8 TeV Z rapidity dist. [1503.00963] update
 - ATLAS 7 TeV inclusive jet [1410.8857] update
 - CMS 7 TeV inclusive jet (extended y range)[1406.0324] update
 - ATLAS 7 TeV Z pT dist. [1406.3660] new
 - LHCb 13 TeV Z rapidity dist. [1607.06495] update
 - CMS 8 TeV Z pT and rapidity dist. (double diff.) [1504.03511] new
 - CMS 8 TeV W, muon asymmetry dist. [1603.01803] update
 - ATLAS 7 TeV W/Z, lepton(s) rapidity dist. [1612.03016] update
 - CMS 7,8 TeV tT differential distributions new
 - ATLAS 7,8 TeV tT differential distributions new

CT14 HERA2 PDFs

CT14-like fits with HERA1 data replaced by HERA2 data (Run I and II combined)

HERA1 data in CT14 NNLO

$Q_{\mathrm{cut}} [\mathrm{GeV}]$	no cut	2.00
$\chi^2/N_{pts}(N_{pts})$	(647)	1.02 (579)
$NC e^+p$	(434)	1.05 (366)
$NC e^-p$	(145)	0.74 (145)
$CC e^+ p$	(34)	0.97 (34)
$CC e^-p$	(34)	0.53 (34)

HERA2 data in CT14 HERA2 NNLO

X^2/N_{pt} as increasing weight

- ★ NMC F₂^P data dropped; CMS 7
 TeV inclusive jet data updated
- freeing one more parameter for strangeness parametrization
- ★ overall HERA2 data fit reasonably well, except for the e-p data

CT14 HERA2 PDFs

◆ CT14-like fits with HERA1 data replaced by HERA2 data (Run I and II combined)

residuals on kinematic plane

- data points with large residuals spread over the entire region
- change of selection cuts does not show systematic effects
- no clear indication of deviation from DGLAP evolution

CT14 HERA2 PDFs

CT14-like fits with HERA1 data replaced by HERA2 data (Run I and II combined)

effects due to new data and freeing one parameter; all changes well within CT14 uncertainties; continue to recommend CT14 nominal set for LHC Run2

CT17p — theory for LHC data

◆ FastNLO/APPLgrid NLO fast interface with tabulated NNLO/NLO Kfactors; several issues arise given the percent-level precision required

9

★ Local generation of APPLgrid tables from MCFM and aMCFast

★ MC errors in the K-factors; dependence of the K-factors on the PDFs

MC errors in APPLgrid tables especially for fiducial cross sections at tail region

NNLO/NLO inclusive jet

★ Inclusion of the theoretical error through scale variations with certain assumptions on correlations, e.g,

$$\sigma_{bin}^{NLO}(\mu_{F,0}, \, \mu_{R,0}, \, i) \Big\{ 1 + \alpha_s^2(\mu_{R,0}) \sum_{j=1}^5 e_j(i) x_j \Big\}$$

FastNLO tables generated from DiffTop for top-quark pair production

CT17p — agreement with and between data

- Preliminary studies on agreement with the new LHC data also on possible tension between different data
 - method: from the nominal fit (with all data sets included) start a scan with increasing weight for one data set (weight 10 for extreme case)
 - ★ LHC data studied: LHCb 7 TeV W,Z rapidity, 8 TeV Z rapidity; ATLAS 7 TeV Z pT, 7 TeV inc. jet; CMS 7 TeV inc. jet
 - all results are PRELIMINARY;
 currently theo. predictions used
 for LHC jet and Z p_T data are at
 NLO only; still working on the
 NNLO K-factors

χ^2 in nominal and extreme fit

Data	χ²/N _{pt} (nom.)	χ²/N _{pt} (extr.)
LHCb 7	44/33	28/33
LHCb 8	38/17	22/17
ATL. 7 Z pT	48/8	21/8
ATL. 7 Jet	305/140	284/140
CMS 7 Jet	233/158	213/158

χ^2 change in two extreme scan

Δχ²/N _{pt}	LHCb7(extr.)	ATL. Jet(extr.)
LHCb 7	-15/33 ↓	+1/33
LHCb 8	-8/17 ↓	-3/17
ATL. 7 Z pT	-3/8	+16/8 🕇
ATL. 7 Jet	+4/140	-20/140 ↓
CMS 7 Jet	+6/158	+13/158 🕇

CT17p — LHCb 7 and 8 TeV W/Z data

◆ CT14 already show good agreement with the data; consistency of 7 and 8 TeV; refitting further bring CT17p close to central of the data

predictions vs. data, CT14 (blue), CT10(dotted), CT17p(red solid)

CT17p — LHCb 7 and 8 TeV W/Z data

◆ LHCb data prefer smaller ubar and dbar both for 7 and 8 TeV, and larger strangeness; negligible impact on gluon PDF

CT17p best-fit vs. CT14 HERA2

- red curve represents CT17p fit with weight=1 for all data set, dark green/blue lines for fits with increasing weight (up to 10) for the specified set
- large spread indicating strong effects from that data in direction from red to blue

CT17p — ATLAS 7 TeV Z p_T

→ Fitting 8 data points in range [40, 150] GeV, poor fit if w/o K-factors; prefer harder gluon ~0.02, softer gluon x>0.1; impact small on quarks

predictions vs. data ALTAS, 7TeV, L=4.7 fb⁻¹ 1.10 **CT14** $1/\sigma^* d\sigma/dP_T^Z$ [GeV⁻¹] CT17pw10 0.95 100 60 80 120 140 40 P_{T}^{Z} [GeV] CT17p best-fit vs. CT14 HERA2 (x,Q) at Q = 1.3 GeV 90%C.L. PDF Ratio to CT14HERA2NNLO CT14HERA2NNLO h1363b2471 h1363b247a gluon, ATLAS 7 Z p_T

 10^{-3}

 10^{-2}

 10^{-1} 0.2

0.5

0.9

CT17p — ATLAS 7 TeV inc. jet

◆ Hard to get a good fit with all rapidity intervals; data prefer harder gluon x>0.1, softer gluon ~0.02, smaller d-quark x>0.5

predictions vs. data, CT17p(red), CT17p+w10(blue dashed)

- different trends of theory vs.
 unshifted data in low and high
 rapidity bins; refitting failed to
 adjust theory in the same manner
- ★ small statistical and uncorrelated sys. errors; most likely large chi2 is due to fluctuation of data itself

CT17p — ATLAS 7 TeV inc. jet

◆ Hard to get a good fit with all rapidity intervals; data prefer harder gluon x>0.1, softer gluon ~0.02, smaller d-quark x>0.5

CT17p best-fit vs. CT14 HERA2

CT14 QEDinc PDFs

- ◆ CT14 set including photon PDF (NLO QCD+LO QED) based on radiative ansatz and with constraints from photon production in DIS

 - inelastic part: radiative ansatz with one free parameter (momentum frac.), similar to MRST QED

momentum frac. of inelastic part constrained from ZEUS isolated photon data

PDFs with photon (inelastic)

68% CL limit on photon carried mom. frac. of proton, 0.11% at Q=1.3 GeV

CT14 MC replicas

◆ Two ensembles of CT14 MC replicas, Linear sampling(MC1), Log sampling(MC2), both with 1000 replicas

Hessian, MC1, MC2: solid, short-dashed, long-dashed

reproducing statistical measures given by Hessian sets with small numbers of replicas; maintain positivity conditions as imposed in CT14

CT14 fitted charm

 Update on studies of the intrinsic charm models, BHPS and SEA-like, based on CT14 setups

 10^{-2}

 $10^{-4} 10^{-3}$

☆ for each model the 90% C.L. limit on the momentum fraction carried by charm are determined

 10^{-1} 0.2

0.5

0.9

 ★ allow much larger charm PDF than in perturbative case; changes on other flavors small in general

Summary

- We are working towards a major update of the CTEQ-TEA PDFs with the new combined HERA data and new LHC Run 1 and Run 2 data, especially the Z boson pT data and top-quark pair distributions
- ◆ Percent-level precision of the LHC data requires careful examination of both the theoretical predictions used, e.g., MC uncertainties in NNLO predictions, remaining theoretical errors, and the agreement/tension between different data, e.g, if tension exists then may lose the constraining power and may even get lager uncertainties on the PDFs
- We use FastNLO or local generated APPLgrid tables for all the new LHC data, K-factors either can be calculated locally or from public
- ◆ After we better understand new constraints from the experiments, we plan to release the CT17 PDFs later this year

Thanks for your attention!

Backup

Top-quark pair differential distributions

Several distributions measured by ATLAS and CMS that have information on the high-x gluon

 m_{tT} , y_{tT} , p_t , y_t , p_{tT} ; double, triple differential dist.

Only one distribution should be used, unless a correlation model can be developed

which one?

We are currently doing exploratory studies at NLO using MCFM and DiffTop and at aNNLO using DiffTop

starting with rapidity and pT of the top quark

- ATLAS and CMS have different trends; in this case, ATLAS favors harder gluon (than NNPDF3.0) at high x, CMS weaker gluon
- A In general, the ATLAS and CMS top results are in tension internally, and with each other (the latter more so in the case of normalized distributions where the experimental errors are smaller)
- ★ If tension, then gluon PDF uncertainty may not decrease and may even increase

Backup

◆ LHCb data prefer smaller ubar and dbar both for 7 and 8 TeV, and larger strangeness; negligible impact on gluon PDF

CT17p best-fit vs. CT14 HERA2

- red curve represents CT17p fit with weight=1 for all data set, dark green/blue lines for fits with increasing weight (up to 10) for the specified set
- large spread indicating strong effects from that data in direction from red to blue