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INTRODUCTION SPLITTING FUNCTIONS LLL RECONSTRUCTION CONCLUSIONS

INTRODUCTION
Deep Inelastic Scattering: a lepton scatters from a proton

Cq,g

fq, fg

Lepton

Proton

Quark or Gluon

Q

xpp

Boson

Boson: γ,H,Z0 (Neutral Current) or W± (Charged Current)

Cross-section: σ ∼
∑

a Fa(x,Q2) =
∑

a

[
Ca,q ⊗ fq + Ca,g ⊗ fg

]
Fa – “Structure Function”

Ca,j – “Coefficient Function”
⊗ – “Mellin Convolution”

fj – “Parton Distribution Function”
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INCLUSIVE DIS

To compute Ca,q,Ca,g, we use the optical theorem.

Compute forward scattering amplitudes:

2

∼ Im

Use Dim. Reg. (D = 4− 2ε). Divergences appear as poles in ε.

Renormalization of as removes UV poles. “Collinear” poles remain,

C̃a,j = C̃a,j
(
x, as, Q2

/µ2
r , ε
)
.

2/16



INTRODUCTION SPLITTING FUNCTIONS LLL RECONSTRUCTION CONCLUSIONS

COLLINEAR FACTORIZATION

We need to deal with these collinear poles: renormalize the PDF.

Fa = C̃a,j ⊗ f̃j = Ca,j ⊗ Zji
(
x, as, µ

2
r/µ2

f , ε
)
⊗ f̃i = Ca,j ⊗ fj.

Ca,j is finite. Zji contains only poles in ε.

Factorization at scale µ2
f , implies fj has scale dependence:

d
d lnµ2

f
fj =

d
d lnµ2

f
Zji ⊗ f̃i =

d
d lnµ2

f
Zjk ⊗ Z−1

ki︸ ︷︷ ︸
Pji

⊗ fi.

I this is the DGLAP evolution equation
I Pji are the Splitting Functions
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SPLITTING FUNCTIONS
Know Zji from calculation of C̃a,j, so we can extract Pji.

PDFs are universal to all hadron interactions; Splitting Functions are also.

DGLAP evolution: system of 2nf +1 coupled equations.

By defining the distributions

qs =

nf∑
i=1

(fi + f̄i), q±ns,ij = (fi ± f̄i)− (fj ± f̄j), qV =

nf∑
i=1

(fi − f̄i),

we have the evolution equations, (setting µ2
f = Q2):

d
d ln Q2

(
qs
g

)
=

(
Pqq Pqg
Pgq Pgg

)
⊗
(

qs
g

)
,

d
d ln Q2

q±ns,ij = P±nsq±ns,ij,

d
d ln Q2

qV = PVqV .
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IN MELLIN SPACE...

Take the Mellin transform,

Fa(N,Q2) =

∫ 1

0
dx xN−1F̂a(x,Q2).

Now all convolutions (⊗) are simple products.

We compute Mellin moments of C̃a,j, N = 2, 4, 6, ..., not an analytic
expression for arbitrary N (which gives x-space expression via IMT).

I Mellin moments of Splitting Functions Pij.

Q: Given some fixed number of Mellin moments of Pij, can we derive an
analytic expression for general N?

I this is the goal of this project.
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SOFTWARE
qgraf: generate diagrams (1.2 million!) [Nogueira ‘93]

TFORM: physics, project Mellin moments. [Kuipers,Ueda,Vermaseren,Vollinga ‘13]

Produces 2-point tensor integrals, which must be reduced to masters.

To 3 loops, we can use MINCER. [Larin,Tkachov,Vermaseren ‘91]

At 4 loops, FORCER. State of the art. [Ruijl,Ueda,Vermaseren]
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WHAT DO Pij “LOOK LIKE”?
To a3

s , written in terms of harmonic sums,

Sm(N) =

N∑
i=1

1
im
, S−m(N) =

N∑
i=1

(−1)i

im
,

S[−]m1,m2,...,ml(N) =

N∑
i=1

[(−1)i]

im
Sm2,...,ml(i),

and denominators, Dp
i =

(
1

N+i

)p
.

Define
I harmonic weight:

∑l
i=1 |mi|,

I overall weight: harmonic weight + p.

Pij =

∞∑
n=0

an+1
s P(n)

ij .

To a3
s , P(n)

ij written as terms of overall weight up to (2n + 1).
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2-LOOP EXAMPLE

P(1)
qg

∣∣∣
CAnf

=−
[
8(2D2 − 2D1 + D0)S−2 + 8(2D2 − 2D1 + D0)S1,1

+ 16(D2
2 − D2

1)S1 + 8(4D3
2 + 2D3

1 + D3
0)
]

OW3

−
[4

3(44D2
2 + 12D2

1 + 3D2
0)
]

OW2

+
[4

9(20D−1 − 146D2 + 153D1 − 18D0)
]

OW1

I At overall weight i, up to factor (1/3)(3−i), coefficients are integers.

Possible basis:

{S−2, S1,1, S2} · {D0,D1,D2}

{S1} · {D1,2
0 ,D1,2

1 ,D1,2
2 }

{1} · {D1,2,3
0 ,D1,2,3

1 ,D1,2,3
2 ,D−1}

Assuming (1/3)(3−i), need to determine 25 integer coefficients.
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2-LOOP EXAMPLE

Compute Mellin moments:

P(1)
qg

∣∣∣
CAnf

(2) = 35/(33)

P(1)
qg

∣∣∣
CAnf

(4) =− 16387/(23 32 53)

P(1)
qg

∣∣∣
CAnf

(6) =− 867311/(23 33 51 73)

P(1)
qg

∣∣∣
CAnf

(8) =− 100911011/(26 36 53 71)

...

With moments N = 2, 4, . . . , 50 we can solve for 25 basis coefficients.

Can we do better?
I Use that the coefficients are integer.
I It is a system of Diophantine equations.
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LATTICE BASIS REDUCTION
Lenstra-Lenstra-Lovász Lattice Basis Reduction: [Lenstra,Lenstra,Lovász ‘82]

I find a short lattice basis in polynomial time
I can be used to find integer solutions to equations

axb:
I part of calc [www.numbertheory.org]

I LLL-based solver for systems of Diophantine equations

See also, Mathematica, Maple, fpLLL, ... , many more.

To solve: b1(2), . . . , b25(2)
...

b1(m), . . . , b25(m)


 c1

...
c25

 =


P(1)

qg

∣∣
CAnf

(2)

...
P(1)

qg

∣∣
CAnf

(m)


bi(N), ci: basis elements, coefficients. ci ∈ Z.
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2-LOOP EXAMPLE: RECONSTRUCTION
Determines P(1)

qg

∣∣
CAnf

(25 integer coefficients) with just 9 Mellin moments.

I solution, (c1, . . . , c25) =

(2, 6, 72, 8, 88, 584, 4, 24,−612,−80︸ ︷︷ ︸
SW0

, 0, 0, 4, 0,−4, 0︸ ︷︷ ︸
SW1

, 2, 4,−4, 2, 4,−4, 0, 0, 0︸ ︷︷ ︸
SW2

)

What if the basis were incorrect? For e.g., leave out D−1:
I solve with N = 2, . . . , 18,

( − 43, 423, 123, 1492,−102, 1332, 4, 24,−612,−15, 437, 102,−2399, 80,

1700,−146, 180,−26,−1065, 670, 579,−919, 490, 605)

I solve with N = 2, . . . , 20,

( − 178, 4391,−25712, 412,−10348,−6476, 4, 24,−612,−572, 25401,−2178,

− 5642,−3526,−20152,−3302,−3161, 6474,−4011, 5092, 3775,−3283,

− 4617, 11029)

Claim: these solutions are “obviously bad”.
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FOUR-LOOP SPLITTING FUNCTIONS
Large-nf contributions:

I subset of diagrams, much easier for FORCER to compute
I smaller reconstruction bases (terms of lower overall weight)

Singlet Splitting Functions, colour factors at n 3
f ,

P(3)
qq {CFn 3

f } P(3)
qg {CAn 3

f ,CFn 3
f }

P(3)
gq {CFn 3

f } P(3)
gg {CAn 3

f ,CFn 3
f }

Guess bases using lower order information. Number of coefficients:

P(3)
qq {69} P(3)

qg {125, 101}

P(3)
gq {38} P(3)

gg {34, 54}

Moments used for reconstruction, (check), N = 2, . . .

P(3)
qq {30(44)} P(3)

qg {×(×), 40(54)}

P(3)
gq {18(28)} P(3)

gg {20(28), 26(32)}
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HARDEST SINGLET CASE

P(3)
qg

∣∣
CAn 3

f
: Basis with 125 unknown integer coefficients.

N = 2, . . . , 46 insufficient to determine a good solution.

Moment calculations become very computationally demanding.
Hardest diagram computed at N = 46,

I ∼ 2 weeks wall-time [16 cores, 192GB RAM]

I ∼ 13TB peak disk usage by TFORM

→ no more moments!

We need to somehow make the basis smaller.
Use additional constraints:

I large-x limit: no irrational constants other than ζi -1 coeff.
I #S1,2 = −#S2,1 -7 coeff.

117 unknowns. Solution with N = 2, . . . , 44, N = 46 checks.
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NON-SINGLET SPLITTING FUNCTIONS
n 3

f terms of P(3),±
ns are already known. [Gracey ‘94]

We determine the n 2
f terms of P(3),+

ns (even N) and P(3),−
ns (odd N).

Colour factors to determine at n 2
f :

I C 2
F n 2

f

I CACFn 2
f – diagrams are very hard to compute!

Method: decompose in two ways,

P(3),±
ns {n 2

f {C
2

F ,CACF}} = n 2
f

(
2C 2

F A + CF(CA − 2CF)B±
)

= n 2
f

(
2C 2

F (A− B±) + CFCAB±
)
.

A should be common to both P±ns; use both odd and even N. Large nc.

Compute (easier) C 2
F n 2

f diagrams to higher N to determine (A− B±).

From these, determine B+ and B− and hence P(3),+
ns and P(3),−

ns . X
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VERIFICATION

Check against existing results:

I Linear combinations of n 3
f terms of P(3)

qq , P(3)
gq , and P(3)

gq , P(3)
gg

[Gracey ‘96,‘98]

I Large-N prediction of P(3)
qq , P(3)

gg [Dokshitzer,Marchesini,Salam ‘06]

I Small-x Double Log Resummations [Davies,Kom,Vogt]

I Large-x Double Log Resummations [Soar,Moch,Vermaseren,Vogt ‘10]

I Cusp Anomalous Dimension at a4
s : Given by A in large-N limit

[Henn,Smirnov,Smirnov,Steinhauser ‘16] [Grozin ‘16]

Everything is in agreement.
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OUTLOOK
Using FORCER, we determine moments of 4-loop Splitting Functions.

We have used these moments to derive analytic all-N expressions for
I n 3

f terms of P(3)
qq , P(3)

qg , P(3)
gq , P(3)

gg

I n 2
f terms of P(3),±

ns and P(3)
V .

Using the OPE, [Moch, RUVV, to appear]

I n 1
f and n 0

f terms of A.
⇒ large-nc P(3),±

ns complete.

To come:
I Numerical approx. to (rest of)

P(3),±
ns , using 8 moments.

I Suitable for N3LO analysis,
at least at x & 10−2. 0

0.2

0.4

0.6

0.8

0 5 10 15 20 25

large n
c

N

 γ
 ns

 γ
 (3)± 

(N)

n
f
 = 3

n
f
 = 4

points: ± at even/odd N

N

 γ
 ns

 γ
 (3)± 

(N)

expansion in α
S

n
f
 = 5

n
f
 = 6

-0.3

-0.2

-0.1

0

0.1

0 5 10 15 20 25
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BACKUP: NON-SINGLET SPLITTING FUNCTIONS

To determine the basis coefficients,

A:
I basis with 54 unknown coefficients
I reconstruct with N = 2, 3, . . . , 17. N = 18, 19, . . . , 22 check.

(A− B+) and (A− B−) are harder:
I bases with 139 unknown coefficients
I additional constraints reduce to 115, like P(3)

qg approach

I reconstruct (A− B+) with N = 2, . . . , 40, N = 42 checks
I reconstruct (A− B−) with N = 3, . . . , 37, N = 39 checks.
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BACKUP: SIMPLE LLL EXAMPLE
Suppose r = 1.61803 is a (rounded) solution to a quadratic equation with
integer coefficients.

Form the matrix  1 0 0 10000r2

0 1 0 10000r
0 0 1 10000

 .
A new basis consists of vectors of the form (a, b, c, 10000(ar2 + br + c)).

Apply LatticeReduce[] (Mathematica): −1 1 1 0
−7 41 −48 120
−11 66 −78 −100

 .
−x2 + x + 1 = 0 =⇒ x = 1.61803 (6 s.f.) X

−7x2 + 41x− 48 = 0 =⇒ x = 1.61732 (6 s.f.)

−11x2 + 66x− 78 = 0 =⇒ x = 1.61830 (6 s.f.).
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