Large- n_{f} Contributions to the Four-Loop Splitting Functions in QCD

Nucl. Phys. B915 (2017) 335-362, arXiv:1610.07477

Joshua Davies
Department of Mathematical Sciences
University of Liverpool

Collaborators: A. Vogt (University of Liverpool),
B. Ruijl, T. Ueda, J. Vermaseren (Nikhef)

25th International Workshop on Deep Inelastic Scattering and Related Topics 6th April

Introduction

Deep Inelastic Scattering: a lepton scatters from a proton

Boson: $\boldsymbol{\gamma}, \boldsymbol{H}, \boldsymbol{Z}^{\mathbf{0}}$ (Neutral Current) or $\boldsymbol{W}^{ \pm}$(Charged Current)
Cross-section: $\sigma \sim \sum_{a} F_{a}\left(x, Q^{2}\right)=\sum_{a}\left[C_{a, q} \otimes f_{q}+C_{a, g} \otimes f_{g}\right]$

$$
\begin{array}{r}
F_{a}-\text { "Structure Function" } \\
C_{a, j}-\text { "Coefficient Function" } \\
\otimes-\text { "Mellin Convolution" } \\
f_{j}-\text { "Parton Distribution Function" }
\end{array}
$$

Inclusive DIS

To compute $C_{a, q}, C_{a, g}$, we use the optical theorem.
Compute forward scattering amplitudes:

Renormalization of $\boldsymbol{a}_{\mathrm{s}}$ removes UV poles. "Collinear" poles remain,

$$
\tilde{\mathcal{C}}_{a, j}=\tilde{\mathcal{C}}_{a, j}\left(x, a_{\mathrm{s}}, \mathrm{Q}^{2} / \mu_{\mathrm{r}}^{2}, \varepsilon\right) .
$$

Collinear Factorization

We need to deal with these collinear poles: renormalize the PDF.

$$
F_{a}=\tilde{C}_{a, j} \otimes \tilde{f}_{j}=C_{a, j} \otimes Z_{j i}\left(x, a_{\mathrm{s}}, \mu_{\mathrm{r}}^{2} / \mu_{\mathrm{f}}^{2}, \varepsilon\right) \otimes \tilde{f}_{i}=C_{a, j} \otimes f_{j}
$$

$C_{a, j}$ is finite. $\boldsymbol{Z}_{j i}$ contains only poles in ε.
Factorization at scale $\boldsymbol{\mu}_{\mathrm{f}}^{2}$, implies \boldsymbol{f}_{j} has scale dependence:

$$
\frac{d}{d \ln \mu_{\mathrm{f}}^{2}} f_{j}=\frac{d}{d \ln \mu_{\mathrm{f}}^{2}} Z_{j i} \otimes \tilde{f}_{i}=\underbrace{\frac{d}{d \ln \mu_{\mathrm{f}}^{2}} Z_{j k} \otimes Z_{k i}^{-1}}_{P_{j i}} \otimes f_{i}
$$

- this is the DGLAP evolution equation
- $P_{j i}$ are the Splitting Functions

Splitting Functions

Know $\boldsymbol{Z}_{j i}$ from calculation of $\tilde{\boldsymbol{C}}_{a, j}$, so we can extract $\boldsymbol{P}_{j i}$.
PDFs are universal to all hadron interactions; Splitting Functions are also.
DGLAP evolution: system of $2 n_{f}+1$ coupled equations.
By defining the distributions

$$
q_{s}=\sum_{i=1}^{n_{f}}\left(f_{i}+\bar{f}_{i}\right), \quad q_{n s, i j}^{ \pm}=\left(f_{i} \pm \bar{f}_{i}\right)-\left(f_{j} \pm \bar{f}_{j}\right), \quad q_{V}=\sum_{i=1}^{n_{f}}\left(f_{i}-\bar{f}_{i}\right)
$$

we have the evolution equations, (setting $\mu_{\mathrm{f}}^{2}=Q^{2}$):

$$
\begin{gathered}
\frac{d}{d \ln Q^{2}}\binom{q_{\mathrm{s}}}{g}=\left(\begin{array}{cc}
P_{q q} & P_{q g} \\
P_{g q} & P_{g g}
\end{array}\right) \otimes\binom{q_{\mathrm{s}}}{g} \\
\frac{d}{d \ln Q^{2}} q_{n s, i j}^{ \pm}=P_{n s}^{ \pm} q_{n s, i j}^{ \pm} \\
\frac{d}{d \ln Q^{2}} q_{V}=P_{V} q_{V}
\end{gathered}
$$

In Mellin space...

Take the Mellin transform,

$$
F_{a}\left(N, Q^{2}\right)=\int_{0}^{1} \mathrm{~d} x x^{N-1} \hat{F}_{a}\left(x, Q^{2}\right)
$$

Now all convolutions (\otimes) are simple products.
We compute Mellin moments of $\tilde{\boldsymbol{C}}_{\boldsymbol{a}, j}, N=\mathbf{2}, \mathbf{4}, \mathbf{6}, \ldots$, not an analytic expression for arbitrary N (which gives x-space expression via IMT).

- Mellin moments of Splitting Functions $\boldsymbol{P}_{i j}$.

Q: Given some fixed number of Mellin moments of $\boldsymbol{P}_{i j}$, can we derive an analytic expression for general N ?

- this is the goal of this project.

Software

qgraf: generate diagrams (1.2 million!)
TFORM: physics, project Mellin moments. [Kuipers,Ueda,Vermaseren,Vollinga '13] Produces 2-point tensor integrals, which must be reduced to masters.

To 3 loops, we can use MINCER.

At 4 loops, FORCER. State of the art.

What DO $\boldsymbol{P}_{i j}$ "LOOK LIKE"?

To a_{s}^{3}, written in terms of harmonic sums,

$$
\begin{aligned}
& S_{m}(N)=\sum_{i=1}^{N} \frac{1}{i^{m}}, \quad S_{-m}(N)=\sum_{i=1}^{N} \frac{(-1)^{i}}{i^{m}} \\
& S_{[-] m_{1}, m_{2}, \ldots, m_{l}}(N)=\sum_{i=1}^{N} \frac{\left[(-1)^{i}\right]}{i^{m}} S_{m_{2}, \ldots, m_{l}}(i)
\end{aligned}
$$

and denominators, $D_{i}^{p}=\left(\frac{1}{N+i}\right)^{p}$.
Define

- harmonic weight: $\sum_{i=1}^{l}\left|m_{i}\right|$,
- overall weight: harmonic weight $+\boldsymbol{p}$.

$$
\boldsymbol{P}_{i j}=\sum_{n=0}^{\infty} a_{\mathrm{s}}^{n+1} P_{i j}^{(n)}
$$

To $\boldsymbol{a}_{\mathrm{s}^{3}} \boldsymbol{P}_{i j}^{(n)}$ written as terms of overall weight up to $(\mathbf{2} n+\mathbf{1})$.

2-LOOP EXAMPLE

$$
\begin{aligned}
\left.P_{q g}^{(1)}\right|_{C_{A} n_{f}}= & -\left[8\left(2 D_{2}-2 D_{1}+D_{0}\right) \mathrm{S}_{-2}+8\left(2 D_{2}-2 D_{1}+D_{0}\right) \mathrm{S}_{1,1}\right. \\
& \left.+16\left(D_{2}^{2}-D_{1}^{2}\right) \mathrm{S}_{1}+8\left(4 D_{2}^{3}+2 D_{1}^{3}+D_{0}^{3}\right)\right]_{\text {ow } 3} \\
& -\left[\frac{4}{3}\left(44 D_{2}^{2}+12 D_{1}^{2}+3 D_{0}^{2}\right)\right]_{\text {ow } 2} \\
& +\left[\frac{4}{9}\left(20 D_{-1}-146 D_{2}+153 D_{1}-18 D_{0}\right)\right]_{\text {OW } 1}
\end{aligned}
$$

- At overall weight i, up to factor $(1 / 3)^{(3-i)}$, coefficients are integers.

Possible basis:

$$
\begin{aligned}
\left\{S_{-2}, S_{1,1},\right. & \left.S_{2}\right\} \\
\{ & \cdot\left\{D_{0}, D_{1}, D_{2}\right\} \\
\left\{S_{1}\right\} & \cdot\left\{D_{0}^{1,2}, D_{1}^{1,2}, D_{2}^{1,2}\right\} \\
\{1\} & \cdot\left\{D_{0}^{1,2,3}, D_{1}^{1,2,3}, D_{2}^{1,2,3}, D_{-1}\right\}
\end{aligned}
$$

Assuming $(1 / 3)^{(3-i)}$, need to determine 25 integer coefficients.

2-LOOP EXAMPLE

Compute Mellin moments:

$$
\left.\begin{aligned}
& P_{q g}^{(1)} \\
& P_{q g}^{(1)} \\
& C_{C_{A} n_{f}}(2)=35 /\left(3^{3}\right) \\
& P_{q g}^{(1)} \\
& \left.\right|_{C_{A} n_{f}}(4)=-16387 /\left(2^{3} 3^{2} 5^{3}\right) \\
& P_{q g}^{(1)}
\end{aligned}\right|_{C_{A} n_{f}}(8)=-867311 /\left(2^{3} 3^{3} 5^{1} 7^{3}\right)=-100911011 /\left(2^{6} 3^{6} 5^{3} 7^{1}\right)
$$

With moments $N=\mathbf{2}, \mathbf{4}, \ldots, 50$ we can solve for 25 basis coefficients.
Can we do better?

- Use that the coefficients are integer.
- It is a system of Diophantine equations.

Lattice Basis Reduction

Lenstra-Lenstra-Lovász Lattice Basis Reduction:

- find a short lattice basis in polynomial time
- can be used to find integer solutions to equations
axb:
- part of calc
- LLL-based solver for systems of Diophantine equations

See also, Mathematica, Maple, fpLLL, ... , many more.
To solve:

$$
\left(\begin{array}{c}
b_{1}(2), \ldots, b_{25}(2) \\
\vdots \\
b_{1}(m), \ldots, b_{25}(m)
\end{array}\right)\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{25}
\end{array}\right)=\left(\begin{array}{c}
\left.P_{q g}^{(1)}\right|_{c_{A} n_{f}}(2) \\
\vdots \\
\left.P_{q g}^{(1)}\right|_{C_{A} n_{f}}(m)
\end{array}\right)
$$

$b_{i}(N), c_{i}$: basis elements, coefficients. $c_{i} \in \mathbb{Z}$.

2-LOOP EXAMPLE: RECONSTRUCTION

Determines $\left.P_{q g}^{(1)}\right|_{C_{A} n_{f}}$ (25 integer coefficients) with just 9 Mellin moments.

- solution, $\left(c_{1}, \ldots, c_{25}\right)=$

What if the basis were incorrect? For e.g., leave out D_{-1} :

- solve with $N=2, \ldots, 18$,

$$
\begin{aligned}
& (-43,423,123,1492,-102,1332,4,24,-612,-15,437,102,-2399,80 \\
& 1700,-146,180,-26,-1065,670,579,-919,490,605)
\end{aligned}
$$

- solve with $N=2, \ldots, 20$,
($-178,4391,-25712,412,-10348,-6476,4,24,-612,-572,25401,-2178$,
$-5642,-3526,-20152,-3302,-3161,6474,-4011,5092,3775,-3283$,
$-4617,11029)$
Claim: these solutions are "obviously bad".

Four-Loop Splitting Functions

Large $-n_{f}$ contributions:

- subset of diagrams, much easier for FORCER to compute
- smaller reconstruction bases (terms of lower overall weight)

Singlet Splitting Functions, colour factors at n_{f}^{3},

$$
\begin{array}{ll}
\boldsymbol{P}_{q q}^{(3)}\left\{C_{F} n_{f}^{3}\right\} & \boldsymbol{P}_{q g}^{(3)}\left\{C_{A} n_{f}^{3}, C_{F} n_{f}^{3}\right\} \\
\boldsymbol{P}_{g q}^{(3)}\left\{C_{F} n_{f}^{3}\right\} & \boldsymbol{P}_{g g}^{(3)}\left\{C_{A} n_{f}^{3}, C_{F} n_{f}^{3}\right\}
\end{array}
$$

Guess bases using lower order information. Number of coefficients:

$$
\begin{array}{ll}
P_{q q}^{(3)}\{69\} & P_{q g}^{(3)}\{125,101\} \\
P_{g q}^{(3)}\{38\} & P_{g g}^{(3)}\{34,54\}
\end{array}
$$

Moments used for reconstruction, (check), $N=2, \ldots$

$$
\begin{array}{ll}
P_{q q}^{(3)}\{30(44)\} & P_{q g}^{(3)}\{\times(\times), 40(54)\} \\
P_{g q}^{(3)}\{18(28)\} & P_{g g}^{(3)}\{20(28), 26(32)\}
\end{array}
$$

Hardest Singlet Case

$\left.P_{q g}^{(3)}\right|_{C_{A} n_{f}^{3}}$: Basis with $\mathbf{1 2 5}$ unknown integer coefficients.
$N=2, \ldots, 46$ insufficient to determine a good solution.
Moment calculations become very computationally demanding. Hardest diagram computed at $N=46$,

- ~ 2 weeks wall-time
[16 cores, 192GB RAM]
- $\sim 13 \mathrm{~TB}$ peak disk usage by TFORM
\rightarrow no more moments!
We need to somehow make the basis smaller.
Use additional constraints:
- large- x limit: no irrational constants other than ζ_{i}
-1 coeff.
- $\# S_{1,2}=-\# S_{2,1}$

117 unknowns. Solution with $N=2, \ldots, 44, N=46$ checks.

Non-Singlet Splitting Functions

\boldsymbol{n}_{f}^{3} terms of $\boldsymbol{P}_{\boldsymbol{n s}}^{(3), \pm}$ are already known.
We determine the \boldsymbol{n}_{f}^{2} terms of $\boldsymbol{P}_{n s}^{(3),+}($ even $N)$ and $\boldsymbol{P}_{n s}^{(3),-}(\operatorname{odd} N)$. Colour factors to determine at n_{f}^{2} :

- $C_{F}^{2} n_{f}^{2}$
- $C_{A} C_{F} n_{f}^{2}$ - diagrams are very hard to compute!

Method: decompose in two ways,

$$
\begin{aligned}
P_{n s}^{(3), \pm}\left\{n_{f}^{2}\left\{C_{F}^{2}, C_{A} C_{F}\right\}\right\} & =n_{f}^{2}\left(2 C_{F}^{2} A+C_{F}\left(C_{A}-2 C_{F}\right) B^{ \pm}\right) \\
& =n_{f}^{2}\left(2 C_{F}^{2}\left(A-B^{ \pm}\right)+C_{F} C_{A} B^{ \pm}\right)
\end{aligned}
$$

A should be common to both $P_{n s}^{ \pm} ;$use both odd and even N. Large \boldsymbol{n}_{c}.
Compute (easier) $C_{F}^{2} n_{f}^{2}$ diagrams to higher N to determine ($A-B^{ \pm}$).
From these, determine \boldsymbol{B}^{+}and \boldsymbol{B}^{-}and hence $\boldsymbol{P}_{n s}^{(3),+}$ and $\boldsymbol{P}_{n s}^{(\mathbf{3}),-} . \checkmark$

VERIFICATION

Check against existing results:

- Linear combinations of n_{f}^{3} terms of $\boldsymbol{P}_{q q}^{(3)}, \boldsymbol{P}_{g q}^{(3)}$, and $\boldsymbol{P}_{g q}^{(3)}, \boldsymbol{P}_{g g}^{(3)}$
[Gracey '96,'98]
- Large- \boldsymbol{N} prediction of $\boldsymbol{P}_{q q}^{(\mathbf{3})}, \boldsymbol{P}_{g g}^{(\mathbf{3})}$
[Dokshitzer,Marchesini,Salam ‘06]
- Small- x Double Log Resummations
[Davies,Kom,Vogt]
- Large- x Double Log Resummations
- Cusp Anomalous Dimension at $\boldsymbol{a}_{\mathrm{s}}^{4}$: Given by \boldsymbol{A} in large- \boldsymbol{N} limit
[Henn,Smirnov,Smirnov,Steinhauser '16] [Grozin '16]
Everything is in agreement.

Outlook

Using FORCER, we determine moments of 4-loop Splitting Functions.
We have used these moments to derive analytic all- N expressions for

- n_{f}^{3} terms of $\boldsymbol{P}_{q q}^{(3)}, \boldsymbol{P}_{q g}^{(3)}, \boldsymbol{P}_{g q}^{(3)}, \boldsymbol{P}_{g g}^{(3)}$
- n_{f}^{2} terms of $P_{n s}^{(3), \pm}$ and $P_{V}^{(3)}$.

Using the OPE, [Moch, RUVV, to appear]

- n_{f}^{1} and n_{f}^{0} terms of A.
\Rightarrow large- $\boldsymbol{n}_{c} \boldsymbol{P}_{n s}^{(3), \pm}$ complete.
To come:
- Numerical approx. to (rest of) $P_{n s}^{(3)}, \pm$, using 8 moments.
- Suitable for $\mathrm{N}^{3} \mathrm{LO}$ analysis, at least at $x \gtrsim \mathbf{1 0}^{\mathbf{- 2}}$.

Backup: Non-Singlet Splitting Functions

To determine the basis coefficients,
A:

- basis with 54 unknown coefficients
- reconstruct with $N=2,3, \ldots, 17 . N=18,19, \ldots, 22$ check.
($\boldsymbol{A}-\boldsymbol{B}^{+}$) and $\left(\boldsymbol{A}-\boldsymbol{B}^{-}\right)$are harder:
- bases with 139 unknown coefficients
- additional constraints reduce to 115, like $\boldsymbol{P}_{q g}^{(3)}$ approach
- reconstruct $\left(A-B^{+}\right)$with $N=2, \ldots, 40, N=42$ checks
- reconstruct $\left(A-B^{-}\right)$with $N=3, \ldots, 37, N=39$ checks.

Backup: Simple LLL Example

Suppose $r=1.61803$ is a (rounded) solution to a quadratic equation with integer coefficients.

Form the matrix

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 10000 r^{2} \\
0 & 1 & 0 & 10000 r \\
0 & 0 & 1 & 10000
\end{array}\right) .
$$

A new basis consists of vectors of the form ($\left.a, b, c, \mathbf{1 0 0 0 0}\left(a r^{2}+b r+c\right)\right)$.
Apply LatticeReduce [] (Mathematica):

$$
\begin{gathered}
\left(\begin{array}{cccc}
-1 & 1 & 1 & 0 \\
-7 & 41 & -48 & 120 \\
-11 & 66 & -78 & -100
\end{array}\right) \\
-x^{2}+x+1=0 \Longrightarrow x=1.61803 \text { (6 s.f.) } \\
-7 x^{2}+41 x-48=0 \Longrightarrow x=1.61732 \text { (6 s.f.) } \\
-11 x^{2}+66 x-78=0 \Longrightarrow x=1.61830 \text { (6 s.f.). }
\end{gathered}
$$

