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INTRODUCTION

Deep Inelastic Scattering: a lepton scatters from a proton

Lepton
Quark or Gluon — — ~ _

p

Proton

Boson: v, H, Z° (Neutral Current) or WE (Charged Current)
Cross-section: & ~ Y, Fa(x,Q*) = X, [Carg ® f; + Cayg ® f]
F, - “Structure Function”
Ca,j — “Coefficient Function”

® - “Mellin Convolution”
fi — “Parton Distribution Function”
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INCLUSIVE DIS

To compute C, 4, Ca,q, We use the optical theorem.

Compute forward scattering amplitudes:

~ Im

Use Dim. Reg. (D = 4 — 2¢). Divergences appear as poles in €.

Renormalization of as removes UV poles. “Collinear” poles remain,

Caj = Cayj (x: a5, /it €)
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COLLINEAR FACTORIZATION

We need to deal with these collinear poles: renormalize the PDF.
Fo = Caj ®f = Caj ® Zji (%, 05, 4/ui2,€) @ fi = Caj ® f;.

C,,j is finite. Zj; contains only poles in €.
Factorization at scale uZ, implies f; has scale dependence:

d

d
f] d1in Mf fl - H’ ]k ®Z k1 ®f1‘

dln,u2

Pji

» this is the DGLAP evolution equation
» Pj; are the Splitting Functions

3/16



INTRODUCTION SPLITTING FUNCTIONS LLL RECONSTRUCTION CONCLUSIONS

000e00 000 00000 00
i

SPLITTING FUNCTIONS

Know Z;; from calculation of éa,j, so we can extract P;;.

PDFs are universal to all hadron interactions; Splitting Functions are also.
DGLAP evolution: system of 2n+1 coupled equations.

By defining the distributions

nyg ny
=Y (fi+f)  af;=CGER) -G, av=D_(f —F)

i=1 i=1

we have the evolution equations, (setting u? = Q?):

d (%):(Ptm qu>®(qs>’
dinQ? \ & Py Py 8

d 4 + +

dln Qz qns,ij = Pnsqns,ij’

d
———qv = Pyqy.
dln Q2 qv vqv
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IN MELLIN SPACE...

Take the Mellin transform,

1
F.(N, Q% :/0 dx AN, (x, QP).

Now all convolutions (®) are simple products.

We compute Mellin moments of C‘a,]-, N = 2,4,6, ..., not an analytic
expression for arbitrary N (which gives x-space expression via IMT).

» Mellin moments of Splitting Functions P;;.

Q: Given some fixed number of Mellin moments of P;;, can we derive an
analytic expression for general N?

» this is the goal of this project.
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SOFTWARE
qgraf: generate diagrams (1.2 million!) [Nogueira ‘93]
TFORM: physics, project Mellin moments. [Kuipers,Ueda, Vermaseren, Vollinga ‘13]

Produces 2-point tensor integrals, which must be reduced to masters.

To 3 IOOPS, we can use MINCER. [Larin, Tkachov,Vermaseren ‘91]

At4 100pS, FORCER. State of the art. [Ruijl,Ueda, Vermaseren]
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WHAT DO P;; “LOOK LIKE”?

To a3, written in terms of harmonic sums,

N N _1\i
Sm(N):lema S_m(N):Z(ﬂ:) ’

i=1 i=1

N 1(—1)i
Sty (N) = > [(=1)]
i=1

im

sz,...,ml (i)7

P
. p__ (1
and denominators, D; = (N +l.) .

Define
» harmonic weight: 25:1 |m;|,
» overall weight: harmonic weight + p.

Pi]' = Zu:+1pl-(]-'l).
n=0

To a3, Pl(f) written as terms of overall weight up to (2n 4 1).
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2-LOOP EXAMPLE

PQ| = [8(2D2 —2D1 + Du)S_, + 8(2D: — 2D1 + Do)S,
any L )
+16(D2 — D?)S, + 8(4D3 + 2D3 + D, )}

- 3 (44D2 + 12D? + 3D} )

+| (20D_1 — 146D, + 153D1 _ 18D0)}

» At overall weight i, up to factor (1/3)®~9, coefficients are integers.

Possible basis:
{5—27 Sl,l, SZ} : {DOa Dla DZ}
{Sl} : {D(Ifza Di’z’ D;’Z}
{1} . {D57273, D}7273’ D;a273’ D—l}

Assuming (1/3)®~%, need to determine 25 integer coefficients.
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2-LOOP EXAMPLE

Compute Mellin moments:

Py 2) = 35/(3°
p CW( ) /(3)
PO (4) = —16387/(2°3%5°)
q8 Cang
PW|  (6) = — 867311/ (2% 3% 5! 7%)
q8 Cang
PO (8) = — 100911011/ (2° 3° 5° 71)
q8 Cang

With moments N = 2,4,...,50 we can solve for 25 basis coefficients.

Can we do better?
» Use that the coefficients are integer.

» It is a system of Diophantine equations.
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LATTICE BASIS REDUCTION

Lenstra-Lenstra-Lovasz Lattice Basis Reduction: [Lenstra,Lenstra,Lovasz ‘82]
» find a short lattice basis in polynomial time
» can be used to find integer solutions to equations

axb:
> part of calc [www.numbertheory.org]

» LLL-based solver for systems of Diophantine equations

See also, Mathematica, Maple, fpLLL, ..., many more.

To solve:

b1(2), ceey b25(2) C1 P( )|CAnf(2)

bl(m), cee g b25(m) €25 (1)|CAnf(m)

b;(N), c;: basis elements, coefficients. ¢; € Z.
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2-LOOP EXAMPLE: RECONSTRUCTION

Determines P%) (25 integer coefficients) with just 9 Mellin moments.

’CAnf
» solution, (c1,...,€5) =

(2,6,72,8,88,584, 4,24, —612, —80, 0,0, 4,0, —4,0,2,4, —4,2, 4, —4,0,0,0)

SWo Sw1 SwW2

What if the basis were incorrect? For e.g., leave out D_q:
» solvewithN = 2,...,18,

( — 43,423,123, 1492, —102, 1332, 4, 24, —612, —15, 437, 102, —2399, 80,
1700, —146, 180, —26, —1065, 670, 579, —919, 490, 605)

» solve with N = 2,...,20,

( — 178, 4391, —25712, 412, —10348, —6476, 4, 24, —612, —572, 25401, —2178,
— 5642, —3526, —20152, —3302, —3161, 6474, —4011, 5092, 3775, —3283,
— 4617,11029)

Claim: these solutions are “obviously bad”.
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FOUR-LOOP SPLITTING FUNCTIONS
Large-ny contributions:
» subset of diagrams, much easier for FORCER to compute
» smaller reconstruction bases (terms of lower overall weight)

Singlet Splitting Functions, colour factors at nf3,
PO {Cen?} P&{Canf, Cen}
Pés) {Cpnf3} Pé;) {CAnf3, Cpnfs}
Guess bases using lower order information. Number of coefficients:
3 3
PP {69} P {125,101}
P {38} P{){34,54}
Moments used for reconstruction, (check), N = 2,...
PP {30(44)} PO {x(x),40(54)}
PP{18(28)} P{{20(28),26(32)}
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HARDEST SINGLET CASE

(3) |C : Basis with 125 unknown integer coefficients.

N = 2,...,46 insufficient to determine a good solution.

Moment calculations become very computationally demanding.
Hardest diagram computed at N = 46,

» ~ 2 weeks wall-time [16 cores, 192GB RAM]
» ~ 13TB peak disk usage by TFORM

— no more moments!

We need to somehow make the basis smaller.
Use additional constraints:

» large-x limit: no irrational constants other than ¢; -1 coeff.
> #5102 = —#8521 -7 coeff.

117 unknowns. Solution with N = 2,...,44, N = 46 checks.
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NON-SINGLET SPLITTING FUNCTIONS

n? terms of P®= are already known. [Gracey ‘94]

We determine the n? terms of P®:* (even N) and P>~ (odd N).
Colour factors to determine at nfz:

> CFan2

> CACpan — diagrams are very hard to compute!

Method: decompose in two ways,
PO (n?{C2,CaCr}} = n? (2C2A + Cr(Ca — 2C¢)BF)
=n} (2C}(A — B¥) + CrCaB*) .

A should be common to both P=;

ns’

use both odd and even N. Large n..
Compute (easier) sznfz diagrams to higher N to determine (A — B¥).

From these, determine B+ and B~ and hence P+ and P®)—. v
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VERIFICATION

Check against existing results:

: : : 3 (3) 3) (3) 3)
> Lmear COl’nbll’lathl’lS Of l’lf terms Of qu , qu , and qu , ng
[Gracey "96,"98]

» Large-N prediction of P‘(f), PS(,;’) [Dokshitzer,Marchesini,Salam ‘06]
» Small-x Double Log Resummations [Davies,Kom,Vogt]
» Large-x Double Log Resummations [Soar,Moch, Vermaseren, Vogt ‘10]
» Cusp Anomalous Dimension at a2: Given by A in large-N limit

[Henn,Smirnov,Smirnov,Steinhauser “16] [Grozin “16]

Everything is in agreement.
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Using FORCER, we determine moments of 4-loop Splitting Functions.

We have used these moments to derive analytic all-N expressions for

3 3) pB) pBG p®G)
> ng terms oquq , qu , qu , ng
> an terms of P(3»* and P$,3 ),

Using the OPE ,  [Moch, RUVYV, to appear]
> nf1 and n? terms of A.

= large-n, P{3)>* complete.

To come:
» Numerical approx. to (rest of)
P®% ysing 8 moments.
» Suitable for N*LO analysis,
at least at x > 10~2.
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points: * at even/odd N
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N
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BACKUP: NON-SINGLET SPLITTING FUNCTIONS

To determine the basis coefficients,

A:
» basis with 54 unknown coefficients
» reconstruct with N = 2,3,...,17. N = 18,19, ..., 22 check.

(A — BT) and (A — B™) are harder:
» bases with 139 unknown coefficients
» additional constraints reduce to 115, like P$?) approach
» reconstruct (A — BT) with N = 2,...,40, N = 42 checks
» reconstruct (A — B~ ) with N = 3,...,37, N = 39 checks.
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BACKUP: SIMPLE LLL EXAMPLE
Suppose r = 1.61803 is a (rounded) solution to a quadratic equation with
integer coefficients.

Form the matrix
1000072

1 0 0
0 1 0 10000r
0 0 1 10000

A new basis consists of vectors of the form (a, b, ¢, 10000(ar? + br + c)).

Apply LatticeReduce[] (Mathematica):

-1 1 1 0
—7 41 —-48 120
—11 66 —78 —100

—*+x+1=0 = x=1.61803 (65.f.) v
—7x* +41x — 48 = 0 = x = 1.61732 (65s.f.)

—11x* + 66x — 78 = 0 —> x = 1.61830 (6s.f.).
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