Large- n_f Contributions to the Four-Loop Splitting Functions in QCD

Nucl. Phys. B915 (2017) 335-362, arXiv:1610.07477

Joshua Davies

Department of Mathematical Sciences
University of Liverpool

Collaborators: A. Vogt (University of Liverpool), B. Ruijl, T. Ueda, J. Vermaseren (Nikhef)

25th International Workshop on Deep Inelastic Scattering and Related Topics 6th April

Introduction

Deep Inelastic Scattering: a lepton scatters from a proton

LLL RECONSTRUCTION

Boson: γ , H, Z^0 (Neutral Current) or W^{\pm} (Charged Current)

Cross-section:
$$\sigma \sim \sum_a F_a(x, Q^2) = \sum_a \left[C_{a,q} \otimes f_q + C_{a,g} \otimes f_g \right]$$

 F_a – "Structure Function" $C_{a,i}$ – "Coefficient Function" ⊗ – "Mellin Convolution" f_i – "Parton Distribution Function"

INCLUSIVE DIS

To compute $C_{a,q}$, $C_{a,q}$, we use the **optical theorem**.

Compute forward scattering amplitudes:

LLL RECONSTRUCTION

Use Dim. Reg. $(D = 4 - 2\varepsilon)$. Divergences appear as poles in ε .

Renormalization of a_s removes UV poles. "Collinear" poles remain,

$$\tilde{C}_{a,j} = \tilde{C}_{a,j} \left(x, a_{\rm s}, Q^2/\mu_{\rm r}^2, \varepsilon \right)$$
.

COLLINEAR FACTORIZATION

INTRODUCTION

000000

We need to deal with these collinear poles: renormalize the PDF.

$$F_a = \tilde{C}_{a,j} \otimes \tilde{f}_j = C_{a,j} \otimes Z_{ji} (x, a_s, \mu_r^2/\mu_f^2, \varepsilon) \otimes \tilde{f}_i = C_{a,j} \otimes f_j.$$

 $C_{a,i}$ is finite. Z_{ii} contains only poles in ε .

Factorization at scale μ_f^2 , implies f_i has scale dependence:

$$\frac{d}{d \ln \mu_{\mathrm{f}}^2} f_j = \frac{d}{d \ln \mu_{\mathrm{f}}^2} Z_{ji} \otimes \tilde{f}_i = \underbrace{\frac{d}{d \ln \mu_{\mathrm{f}}^2} Z_{jk} \otimes Z_{ki}^{-1}}_{P_{ii}} \otimes f_i.$$

- ▶ this is the DGLAP evolution equation
- $ightharpoonup P_{ii}$ are the Splitting Functions

SPLITTING FUNCTIONS

Know Z_{ii} from calculation of $C_{a,i}$, so we can extract P_{ii} .

PDFs are universal to all hadron interactions; Splitting Functions are also.

LLL RECONSTRUCTION

DGLAP evolution: system of $2n_f+1$ coupled equations.

By defining the distributions

$$q_s = \sum_{i=1}^{n_f} (f_i + \bar{f}_i), \qquad q_{ns,ij}^{\pm} = (f_i \pm \bar{f}_i) - (f_j \pm \bar{f}_j), \qquad q_V = \sum_{i=1}^{n_f} (f_i - \bar{f}_i),$$

we have the evolution equations, (setting $\mu_f^2 = Q^2$):

$$\begin{split} \frac{d}{d \ln Q^2} \left(\begin{array}{c} q_{\rm s} \\ g \end{array} \right) &= \left(\begin{array}{c} P_{qq} & P_{qg} \\ P_{gq} & P_{gg} \end{array} \right) \otimes \left(\begin{array}{c} q_{\rm s} \\ g \end{array} \right), \\ \frac{d}{d \ln Q^2} q_{ns,ij}^\pm &= P_{ns}^\pm q_{ns,ij}^\pm, \\ \frac{d}{d \ln Q^2} q_V &= P_V q_V. \end{split}$$

IN MELLIN SPACE...

Take the **Mellin transform**,

$$F_a(N, Q^2) = \int_0^1 dx \ x^{N-1} \hat{F}_a(x, Q^2).$$

LLL RECONSTRUCTION

Now all convolutions (\otimes) are simple products.

We compute **Mellin moments** of $\tilde{C}_{a,i}$, N=2,4,6,..., **not** an analytic expression for arbitrary N (which gives x-space expression via IMT).

- ▶ Mellin moments of Splitting Functions P_{ij} .
- **Q:** Given some fixed number of Mellin moments of P_{ij} , can we derive an analytic expression for general *N*?
 - ▶ this is the goal of this project.

SOFTWARE

INTRODUCTION 00000

qgraf: generate diagrams (1.2 million!)

[Nogueira '93]

TFORM: physics, project Mellin moments. [Kuipers, Ueda, Vermaseren, Vollinga '13] Produces 2-point tensor integrals, which must be reduced to masters.

To 3 loops, we can use **MINCER**.

[Larin, Tkachov, Vermaseren '91]

At 4 loops, **FORCER**. State of the art.

[Ruijl, Ueda, Vermaseren]

To a_s^3 , written in terms of harmonic sums,

$$S_m(N) = \sum_{i=1}^N \frac{1}{i^m}, \quad S_{-m}(N) = \sum_{i=1}^N \frac{(-1)^i}{i^m},$$

$$S_{[-]m_1,m_2,...,m_l}(N) = \sum_{i=1}^N rac{[(-1)^i]}{i^m} S_{m_2,...,m_l}(i),$$

and **denominators**, $D_i^p = \left(\frac{1}{N+i}\right)^p$.

Define

- ▶ harmonic weight: $\sum_{i=1}^{l} |m_i|$
- ▶ **overall weight**: harmonic weight + *p*.

$$P_{ij} = \sum_{n=0}^{\infty} a_s^{n+1} P_{ij}^{(n)}.$$

To a_s^3 , $P_{ii}^{(n)}$ written as terms of overall weight up to (2n+1).

2-LOOP EXAMPLE

$$\begin{split} P_{qg}^{(1)}\Big|_{C_{A}n_{f}} &= -\left[8(2D_{2}-2D_{1}+D_{0})S_{-2}+8(2D_{2}-2D_{1}+D_{0})S_{1,1}\right.\\ &\left. + 16(D_{2}^{2}-D_{1}^{2})S_{1}+8(4D_{2}^{3}+2D_{1}^{3}+D_{0}^{3})\right]_{OW3}\\ &\left. - \left[\frac{4}{3}(44D_{2}^{2}+12D_{1}^{2}+3D_{0}^{2})\right]_{OW2}\right.\\ &\left. + \left[\frac{4}{9}(20D_{-1}-146D_{2}+153D_{1}-18D_{0})\right]_{OW1} \end{split}$$

► At overall weight i, up to factor $(1/3)^{(3-i)}$, coefficients are **integers**.

Possible basis:

$$\begin{split} \{S_{-2}, S_{1,1}, S_2\} \cdot \{D_0, D_1, D_2\} \\ \{S_1\} \cdot \{D_0^{1,2}, D_1^{1,2}, D_2^{1,2}\} \\ \{1\} \cdot \{D_0^{1,2,3}, D_1^{1,2,3}, D_2^{1,2,3}, D_{-1}\} \end{split}$$

Assuming $(1/3)^{(3-i)}$, need to determine 25 integer coefficients.

2-LOOP EXAMPLE

Compute Mellin moments:

$$P_{qg}^{(1)}\Big|_{C_{A}n_{f}}(2) = 35/(3^{3})$$

$$P_{qg}^{(1)}\Big|_{C_{A}n_{f}}(4) = -16387/(2^{3}3^{2}5^{3})$$

$$P_{qg}^{(1)}\Big|_{C_{A}n_{f}}(6) = -867311/(2^{3}3^{3}5^{1}7^{3})$$

$$P_{qg}^{(1)}\Big|_{C_{A}n_{f}}(8) = -100911011/(2^{6}3^{6}5^{3}7^{1})$$

$$\vdots$$

LLL RECONSTRUCTION

With moments $N = 2, 4, \dots, 50$ we can solve for 25 basis coefficients.

Can we do better?

- ▶ Use that the coefficients are **integer**.
- ▶ It is a system of Diophantine equations.

LATTICE BASIS REDUCTION

Lenstra-Lenstra-Lovász Lattice Basis Reduction:

[Lenstra,Lenstra,Lovász '82]

LLL RECONSTRUCTION

- ▶ find a short lattice basis in polynomial time
- can be used to find integer solutions to equations

axb:

▶ part of calc

[www.numbertheory.org]

LLL-based solver for systems of Diophantine equations

See also, Mathematica, Maple, fpLLL, ..., many more.

To solve:

$$\begin{pmatrix}b_1(2),\ldots,b_{25}(2)\\\vdots\\b_1(m),\ldots,b_{25}(m)\end{pmatrix}\begin{pmatrix}c_1\\\vdots\\c_{25}\end{pmatrix}=\begin{pmatrix}P_{qg}^{(1)}\big|_{C_An_f}(2)\\\vdots\\P_{qg}^{(1)}\big|_{C_An_f}(m)\end{pmatrix}$$

 $b_i(N), c_i$: basis elements, coefficients. $c_i \in \mathbb{Z}$.

2-LOOP EXAMPLE: RECONSTRUCTION

Determines $P_{qg}^{(1)}|_{C_{A}n_{\epsilon}}$ (25 integer coefficients) with **just 9** Mellin moments.

LLL RECONSTRUCTION 00000

 \blacktriangleright solution, $(c_1,\ldots,c_{25})=$

$$(\underbrace{2,6,72,8,88,584,4,24,-612,-80}_{SW0},\underbrace{0,0,4,0,-4,0}_{SW1},\underbrace{2,4,-4,2,4,-4,0,0,0}_{SW2})$$

What if the basis were incorrect? For e.g., leave out D_{-1} :

- ightharpoonup solve with $N=2,\ldots,18$,
 - (-43, 423, 123, 1492, -102, 1332, 4, 24, -612, -15, 437, 102, -2399, 80,1700, -146, 180, -26, -1065, 670, 579, -919, 490, 605
 - \triangleright solve with $N=2,\ldots,20$,
 - (-178, 4391, -25712, 412, -10348, -6476, 4, 24, -612, -572, 25401, -2178,-5642, -3526, -20152, -3302, -3161, 6474, -4011, 5092, 3775, -3283,
 - -4617, 11029

Claim: these solutions are "obviously bad".

FOUR-LOOP SPLITTING FUNCTIONS

Large- n_f contributions:

- ▶ subset of diagrams, much easier for **FORCER** to compute
- ► smaller reconstruction bases (terms of lower overall weight)

Singlet Splitting Functions, colour factors at n_f^3 ,

$$P_{qq}^{(3)}\{C_F n_f^3\}$$
 $P_{qg}^{(3)}\{C_A n_f^3, C_F n_f^3\}$
 $P_{gq}^{(3)}\{C_F n_f^3\}$ $P_{gg}^{(3)}\{C_A n_f^3, C_F n_f^3\}$

LLL RECONSTRUCTION

Guess bases using lower order information. Number of coefficients:

$$P_{qq}^{(3)}$$
 {69} $P_{qg}^{(3)}$ {125, 101}
 $P_{gq}^{(3)}$ {38} $P_{gg}^{(3)}$ {34, 54}

Moments used for reconstruction, (check), N = 2, ...

$$P_{qq}^{(3)}\{30(44)\}$$
 $P_{qg}^{(3)}\{\times(\times), 40(54)\}$
 $P_{gq}^{(3)}\{18(28)\}$ $P_{gg}^{(3)}\{20(28), 26(32)\}$

HARDEST SINGLET CASE

 $P_{qg}^{(3)}|_{C_A n_\epsilon^3}$: Basis with 125 unknown integer coefficients.

 $N = 2, \dots, 46$ insufficient to determine a good solution.

Moment calculations become very computationally demanding. Hardest diagram computed at N = 46,

LLL RECONSTRUCTION

 $\triangleright \sim 2$ weeks wall-time

[16 cores, 192GB RAM]

 $ightharpoonup \sim 13\text{TB}$ peak disk usage by **TFORM**

→ no more moments!

We need to somehow make the basis smaller.

Use additional constraints:

▶ large-x limit: no irrational constants other than ζ_i

-1 coeff.

 $\blacktriangleright \#S_{1,2} = -\#S_{2,1}$

-7 coeff.

117 unknowns. Solution with $N = 2, \dots, 44, N = 46$ checks.

NON-SINGLET SPLITTING FUNCTIONS

 n_f^3 terms of $P_{n_s}^{(3),\pm}$ are already known.

[Gracey '94]

We determine the n_f^2 terms of $P_{ns}^{(3),+}$ (even N) and $P_{ns}^{(3),-}$ (odd N). Colour factors to determine at n_f^2 :

LLL RECONSTRUCTION

- $ightharpoonup C_F^2 n_f^2$
- ▶ $C_A C_F n_f^2$ diagrams are **very hard** to compute!

Method: decompose in two ways,

$$P_{ns}^{(3),\pm} \{ n_f^2 \{ C_F^2, C_A C_F \} \} = n_f^2 \left(2 C_F^2 A + C_F (C_A - 2 C_F) B^{\pm} \right)$$

= $n_f^2 \left(2 C_F^2 (A - B^{\pm}) + C_F C_A B^{\pm} \right)$.

A should be common to both P_{nc}^{\pm} use both odd and even N. Large n_c .

Compute (easier) $C_F^2 n_f^2$ diagrams to higher N to determine $(A - B^{\pm})$.

From these, determine B^+ and B^- and hence $P_{ns}^{(3),+}$ and $P_{ns}^{(3),-}$. \checkmark

VERIFICATION

Check against existing results:

- ► Linear combinations of n_f^3 terms of $P_{qq}^{(3)}$, $P_{gq}^{(3)}$, and $P_{gq}^{(3)}$, $P_{gq}^{(3)}$ [Gracev '96, '98]
- ► Large-*N* prediction of $P_{qq}^{(3)}$, $P_{qq}^{(3)}$

[Dokshitzer, Marchesini, Salam '06]

► Small-*x* Double Log Resummations

[Davies, Kom, Vogt]

► Large-*x* Double Log Resummations

[Soar, Moch, Vermaseren, Vogt '10]

► Cusp Anomalous Dimension at a_s^4 : Given by A in large-N limit [Henn,Smirnov,Smirnov,Steinhauser '16] [Grozin '16]

Everything is in agreement.

OUTLOOK

Using **FORCER**, we determine moments of **4-loop Splitting Functions**.

We have used these moments to derive **analytic all-N** expressions for

- $ightharpoonup n_f^3$ terms of $P_{qq}^{(3)}$, $P_{qg}^{(3)}$, $P_{gq}^{(3)}$, $P_{gg}^{(3)}$
- $ightharpoonup n_f^2$ terms of $P_{n_S}^{(3),\pm}$ and $P_V^{(3)}$.

Using the OPE, [Moch, RUVV, to appear]

 \blacktriangleright n_f^1 and n_f^0 terms of A. \Rightarrow large- $n_c P_{nc}^{(3),\pm}$ complete.

To come:

- ► Numerical approx. to (rest of) $P_{ns}^{(3),\pm}$, using 8 moments.
- ► Suitable for N³LO analysis, at least at $x \gtrsim 10^{-2}$.

LLL RECONSTRUCTION

BACKUP: NON-SINGLET SPLITTING FUNCTIONS

To determine the basis coefficients,

A:

- ▶ basis with 54 unknown coefficients
- ► reconstruct with N = 2, 3, ..., 17. N = 18, 19, ..., 22 check.

$$(A - B^{+})$$
 and $(A - B^{-})$ are harder:

- ▶ bases with 139 unknown coefficients
- ▶ additional constraints reduce to 115, like $P_{qq}^{(3)}$ approach
- reconstruct $(A B^+)$ with $N = 2, \dots, 40, N = 42$ checks
- ▶ reconstruct $(A B^-)$ with N = 3, ..., 37, N = 39 checks.

BACKUP: SIMPLE LLL EXAMPLE

Suppose r = 1.61803 is a (rounded) solution to a quadratic equation with integer coefficients.

Form the matrix

$$\left(\begin{array}{cccc} 1 & 0 & 0 & 10000r^2 \\ 0 & 1 & 0 & 10000r \\ 0 & 0 & 1 & 10000 \end{array}\right).$$

A new basis consists of vectors of the form $(a, b, c, 10000(ar^2 + br + c))$.

Apply LatticeReduce[] (Mathematica):

$$\left(\begin{array}{ccccc} -1 & 1 & 1 & 0 \\ -7 & 41 & -48 & 120 \\ -11 & 66 & -78 & -100 \end{array}\right).$$

$$-x^{2} + x + 1 = 0 \implies x = 1.61803 \text{ (6 s.f.)} \checkmark$$
$$-7x^{2} + 41x - 48 = 0 \implies x = 1.61732 \text{ (6 s.f.)}$$
$$-11x^{2} + 66x - 78 = 0 \implies x = 1.61830 \text{ (6 s.f.)}.$$