Parton shower and finite top mass effects in HH production

Matthias Kerner

DIS 2017

Birmingham — 4 April 2017

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut

In collaboration with

Borowka, Greiner, Heinrich, Jones, Luisoni, Schlenk, Schubert, Vryonidou, Zirke

arXiv:1703.09252 JHEP 10 (2016) 107 [1608.04798] PRL 117 (2016) 012001, Erratum 079901 [1604.06447]

Motivation

Dominant production mechanism for HH production is gluon fusion

Sensitive to HHH coupling

Test of Higgs potential & EW symmetry breaking

Most calculations are done in $m_t \to \infty$ limit (Higgs EFT)

HEFT valid for $\sqrt{s} \ll 2 m_T$

Higgs pair production:

 $2 m_H < \sqrt{s}$

full top quark mass dependence required for accurate predictions

- 1. LO, including full m_T dependence Glover, van der Bij `88
- 2. NLO, (Born-improved) HEFT Dawson, Dittmaier, Spira `98 $K \approx 2$
	- including full m_T dependence in real radiation (FT approx.) Maltoni, Vryonidou, Zaro `14 **-10%**
	- including $1/m_T$ expansion Grigo, Hoff, Melnikov, Steinhauser `13; Grigo, Hoff, Steinhauser `15 Degrassi, Giardino, Gröber `16 **±10%**
- 3. NLO, including full m_T dependence Borowka, Greiner, Heinrich, Jones, MK, Schlenk, Schubert, Zirke `16
	- NLO matched to parton shower Heinrich, Jones, Luisoni, MK, Vryonidou `17, this talk
	- transverse momentum NLL+NLO Ferrera, Pires `16
- 4. NNLO (HEFT) de Florian, Mazzitelli `13
	- including all matching coefficients Grigo, Melnikov, Steinhauser `14
	- including $1/m_T$ expansion Grigo, Hoff, Steinhauser `15
	- NNLL soft gluon resummation Shao, Li, Li, Wang `13
	- NNLL + NNLO matching de Florian, Mazzitelli `15
	- fully differential de Florian, Grazzini, Hanga, Kallweit, Lindert, Maierhöfer, Mazzitelli, Rathlev `16

3

+20%

Diagrams **Two Loop Diagrams**

→ numeric calculation required

NLO Calculation

1. Reduction to master integrals using Reduze von Manteuffel, Studerus`12

- full reduction achieved only for planar integrals (non-planar integrals evaluated directly)
- use finite basis von Manteuffel, Panzer, Schabinger `15
- 2. Numerical evaluation of 2-loop integrals using SecDec Borowka, Heinrich, Jahn, Jones, MK, Schlenk, Zirke
	- using Quasi-Monte-Carlo integration with $\mathcal{O}(n^{-1})$ scaling Li, Wang, Yan, Zhao `15; Review: Dick, Kuo, Sloan
	- dynamically set number of sampling points for each integral
	- parallelization on gpu
- 3. Use unweighted events (based on LO) for phase space integration of virtuals

4. Real radiation amplitudes using GoSam Cullen, van Deurzen, Greiner, Heinrich, Luisoni, Mastrolia, Mirabella, Ossola, Peraro, Schlenk, von Soden-Fraunhofen, Tramontano

5. Dipole subtraction Catani Seymour to deal with IR singularities

NLO Results — Invariant Mass

- basic HEFT leads to wrong shape
- B.I. HEFT overestimates by 16% / 30%
- FT approx closer to full result (difference increasing with m_{hh})

NLO Results — Higgs Momentum

- basic HEFT leads to wrong shape
- B.I. HEFT overestimates by 16% / 30%
- FT approx closer to full result (difference increasing with $p_{T,h}$)

 top mass effects important, in particular at $\sqrt{s} = 100 \,\text{TeV}$

Parton Shower Interface

Can not put directly into a Monte Carlo $\sup_{S, t}$ amplitude too slow (median 2n on gpu) for direct interface $\mathcal{P}_{S, t}$ Construct grid for interpolation of virtual amplitude (3141. 2-loop amplitude too slow (median 2h on gpu) for direct interface to PS \rightarrow construct grid for interpolation of virtual amplitude (3741 2-loop results used)

it parameters $(s,$ input parameters ($\hat{s}, \, \hat{t}$) transformed to

$$
x = f(\beta(\hat{s})), \quad c_{\theta} = |\cos \theta| = \left| \frac{\hat{s} + 2\hat{t} - 2m_H^2}{\hat{s}\beta(\hat{s})} \right|, \quad \beta = \left(1 - \frac{4m_H^2}{\hat{s}}\right)^{\frac{1}{2}}
$$

 \rightarrow nearly uniform distribution of phase space points in $(x, c_\theta) \in [0, 1]^2$ if $f(\beta)$ chosen according to cumulative distribution of points in original calculation

 (x, c_{θ})

 (x, c_{θ}) Grid validation:

LHE Events in HEFT & comparison with NNLO *^T* , where NLO is the first non-trivial order to describe the \blacksquare distribution. And \blacksquare and \blacksquare and \blacksquare and \blacksquare with large K-factors [96–98], and we refer the interested reader to Refs. [96, 97] for more more more more more EXPO canging the hold the hold of the hold the hold the hold the hold the second that the second term in POWHEG. divide the contributions of the real radiation *R* which are exponentiated in the Sudakov

Les Houches Event Level: **We have a control to limit the postsibility of the amount of the amount of the amount of hard radiation which is a control of the amount of**

 Sudakov factor included, but no parton shower exponentiated by changing the hdamp parameter in POWHEG. We recall that this allows to divident radio included, but he parton shower

Powheg allows to split real radiation into (exponentiated) singular and regular part autation fillo (exponditioned) sing

^T (right), with full top quark mass dependence. The • $h = \infty$: LHE level results close to NNLO transverse momenta. The predictions for hdamp = 250 are in general closer to the NLO ones • $h = \infty$

• $h = 250$: LHE level approaches NLO in tail of p_T^{nn} distribu $*b*$ • $h = 250$: LHE level approaches NLO in tail of p_T^{hh} distribution

Results including Parton Shower

Powheg $+$ Pythia8

only small parton shower effects on NLO accurate observables

Results including Parton Shower

Parton shower effects large for observables sensitive to real radiation, e.g. *phh T*

Powheg MadGraph5 aMC@NLO

- parton shower enhances tail p_T^{hh} distribution by factor of \sim 2
- difference of matching schemes of \sim 20%
- small difference between full NLO and FT approx. result

Results including Parton Shower

Parton shower effects large for observables sensitive to real radiation, e.g. ΔR^{hh}

Powheg MadGraph5 aMC@NLO

$\Delta R^{hh} < \pi$

- filled by real radiation only LO accurate
- parton shower corrections up to factor of \sim 2.5
- differences due to matching method visible
- NLO accurate
- small dependence on parton shower / matching

Higgs pair production at NLO

- retaining full m_t dependence
- numeric evaluation of 2-loop amplitudes
- reduces cross section by 14% compared to Born-improved HEFT
- corrections not uniform over phase space

Matching to Parton Showers

- up to ∼20% differences for NLO accurate observables only small dependence on matching method
- effects can be large for LO accurate observables

Outlook

- comparison with Herwig and Sherpa parton shower
- combination of NLO in full theory with NNLO HEFT

Backup

Two Logyample it $gg \Rightarrow h/h$ ex ample it *gg*e \Rightarrow hh example *gg* ! *hh*

• tensor structure Glover, van der Bij `88 \bullet tansor structure clover van der Bij 199

$$
{\cal M} \;\; = \;\; \epsilon_\mu (p_1, n_1) \epsilon_\nu (p_2, n_2) \, {\cal M}^{\mu\nu}
$$

 m_{ν}^2 m_{ν}^2 D) $T_{\nu}^{\mu\nu}$ \mathcal{L} c_1 c_1 c_2 c_2 , c_2 , m_H , m_t , D 1 1

with
\n
$$
T_1^{\mu\nu} = g^{\mu\nu} - \frac{p_1^{\nu} p_2^{\mu}}{p_1 \cdot p_2}
$$
\n
$$
T_2^{\mu\nu} = g^{\mu\nu} + \frac{1}{p_T^2 (p_1 \cdot p_2)} \left\{ m_H^2 p_1^{\nu} p_2^{\mu} - 2 (p_1 \cdot p_3) p_3^{\nu} p_2^{\mu} - 2 (p_2 \cdot p_3) p_5^{\nu} p_1^{\mu} + 2 (p_1 \cdot p_2) p_5^{\nu} p_5^{\mu} \right\}
$$

• projectors

construct projectors $P_j^{\mu\nu}$ such that

Amplitude Structure and a *Riversion Complitude* Structure and a *property of loops.* We may the number of loops. We may the number of loo

rewrite loop integrals with r propagators and s inverse propagators as

$$
I_{r,s}(s,t,m_h^2,m_t^2) = (M^2)^{-L\epsilon} (M^2)^{2L-r+s} I_{r,s}\left(\frac{s}{M^2},\frac{t}{M^2},\frac{m_h^2}{M^2},\frac{m_t^2}{M^2}\right)
$$
arbitrary scale

and write renormalized form factors as

$$
F^{\text{virt}} = aF^{(1)} + a^2\left(\frac{n_g}{2}\delta Z_A + \delta Z_a\right)F^{(1)} + a^2\delta m_t^2 F^{ct,(1)} + a^2 F^{(2)} + \mathcal{O}(a^3)
$$

$$
F^{(1)} = \left(\frac{\mu_R^2}{M^2}\right)^{\varepsilon} \left[b_0^{(1)} + b_1^{(1)}\varepsilon + b_2^{(1)}\varepsilon^2 + \mathcal{O}(\varepsilon^3)\right], \qquad (1\text{-loop})
$$

$$
F^{ct,(1)} = \left(\frac{\mu_R^2}{M^2}\right)^{\varepsilon} \left[c_0^{(1)} + c_1^{(1)}\varepsilon + \mathcal{O}(\varepsilon^2)\right], \qquad \text{(mass counter-term)}
$$

$$
F^{(2)} = \left(\frac{\mu_R^2}{M^2}\right)^{2\varepsilon} \left[\frac{b_{-2}^{(2)}}{\varepsilon^2} + \frac{b_{-1}^{(2)}}{\varepsilon} + b_0^{(2)} + \mathcal{O}(\varepsilon)\right], \qquad (2\text{-loop})
$$

 \rightarrow scale variations do not require re-computation of $b_i^{(n)},$ $c_i^{(n)}$

Amplitude Evaluation — Example

$\sqrt{s} = 327.25 \,\text{GeV}, \, \sqrt{-t} = 170.05 \,\text{GeV}, \, M^2 = s/4$

contributing integrals:

Results - Combination with NNLOHEFT

dP

 $\overline{\mathbf{C}}$

18 first attempt to combine NLO_{full} with $NNLO_{HEFT}$ ${\rm d}\sigma_{\rm NLO}^{\rm full}$ d*mhh ·* $\rm{d}\sigma_{NNLO}^{HEFT}/dm_{hh}$ ${\rm d} \sigma_{\rm NLO}^{\rm HEFT}/{\rm d} m_{hh}$ 0*.*00 0*.*05 0*.*10 0*.*15 0*.*20 0*.*25 */* m_{hh} [fb */*GeV] LO NLO NLO-i*.* NNLO HEFT 300 400 500 600 700 800 900 1000 m_{hh} [GeV] 0*.*5 1*.*0 1*.*5 2*.*0 *K* factor NLO-improved NNLO HEFT:

modified Higgs self-interactions

modified Higgs self-interactions

Calculation of σV

Importance sampling:

using

and the value of the
 a 1000 phase-space points σ^V with 2.5% accuracy

- Accuracy goal: -3% for form factor F_1
	- 5-20% for form factor F_2 (depending on F_2/F_1)

• Run time: (gpu time)

- 80 min 2 d (≙wall-clock limit)
- median: 2h

Grigo, Hoff, Steinhauser `15 orders in the inverse top quark mass. The dashed and solid curves correspond to the

Grigo, Hoff, Steinhauser `15

Differential Cross Section

[bp]

24 —- ∆^{EFT} $[6]$ $\overline{}$ $-(\Delta + \Box)^{EFT}$

NNLO and NNLL results t and results of α and results r and r in the left (right) we show the left (right) we show the LO (L), α \blacksquare NNLO \blacksquare

3-point, 1 off-shell leg 3-point, 2 off-shell leg

Spira, Djouadi et al. `93, `95 Bonciani, Mastrolia `03, `04 Anastasiou, Beerli et al. `06

$$
\rightarrow \text{HPLs}
$$

Gehrmann, Guns, Kara `15 \rightarrow generalized HPLs, 12 letters

Amplitude Structure Amplitude Structure (II)

Form factors are sums of rational functions multiplied by integrals that depend on ratios of the scales s,t,m_h^2,m_t^2 and the arbitrary scale M^2

$$
F^{(L)} = \sum_{i} \left[\left(\sum_{j} C_{i,j}^{(L)} \epsilon^{j} \right) \cdot \left(\sum_{k} I_{i,k}^{(L)} \epsilon^{k} \right) \right]
$$

= $\epsilon^{-2} \left[C_{1,-2}^{(L)} \cdot I_{1,0}^{(L)} + C_{1,-1}^{(L)} \cdot I_{1,-1}^{(L)} + \cdots \right]$
+ $\epsilon^{-1} \left[C_{1,-1}^{(L)} \cdot I_{1,0}^{(L)} + \cdots \right] + \cdots$
compute only once

Additionally, all L -loop form factors are computed simultaneously without re-evaluating common integrals

Note: $gg \to HH$ is a loop induced process, real subtraction and mass factorisation contained in $\mathbf{I}, \mathbf{P}, \mathbf{K}$ operators (not discussed here) Catani, Seymour 96

Slide: Stephen Jones — L&L 2016

Phase-Space Sampling Phase-Space Sampling

Phase-space implemented by hand

limited to 2-3 w/ 2 massive particles Events for virtual:

1) VEGAS algorithm applied to LO matrix element $\mathcal{O}(100k)$ events computed

2) Using LO events unweighted events generated using accept/reject method $\mathcal{O}(30k)$ events remain

3) Randomly select 666 Events (woops), compute at NLO, exclude 1

Note: No grids used either for integrals or phase-space

Slide: Stephen Jones — L&L 2016

