

Electroweak Higgs production in SMEFT at NLO in QCD

Ken Mimasu

[C. Degrande, B. Fuks, K. Mawatari, KM, V. Sanz; arXiv:1609.04833] (to appear in EPJC)

> DIS 2017 University of Birmingham

4th April 2017

Outline

- Motivation & brief intro to standard model effective field theory (SMEFT)
- EW Higgs production in SMEFT at the LHC
- Results from the implementation of operators affecting Higgs couplings to gauge bosons
 - Current constraints from global fits & resulting benchmark choices
 - FeynRules/NLOCT UFO model via MadGraph5_aMC@NLO
 - Differential distributions @ NLO in QCD
 - Validity of the EFT
 - Future sensitivity in WH production at HL-LHC

Going NLO

- The LHC is now in the precision era
 - No clear evidence for new physics as we approach the limits of the 'energy frontier'
 - Fully complementary approach: search for deviations in SM processes
 - Require high precision theory input including higher order corrections
- EFT: theoretically consistent, model independent approach to deviations of interactions between SM fields
 - Active area of research that is moving towards NLO predictions
 - NLO important for capturing potentially large QCD K-factors in total rates
 → greater sensitivity
 - Verify stability of differential information beyond leading order
 - Consistent scale uncertainty estimates

SMEFT

- Parametrise new physics effects at experimental energy E
 - BSM states are 'decoupled' *i.e.* live at an energy $\Lambda >> E$
 - Generalised, gauge-invariant interactions between SM degrees of freedom
- Operator expansion:

$$\mathcal{L}_{\text{eff}} = \sum_{i} \frac{c_i \mathcal{O}_i^D}{\Lambda^{D-4}}$$
 more:
 $\begin{array}{c} \text{fields} \\ \text{derivatives} \end{array}$

- Introduces higher-derivative operators to which we are sensitive via large momentum flows through vertices (tails of energy distributions)
- Dimension 6: 59 (76 real) 2499 operators depending on assumptions regarding CP, flavour...

[Buchmuller & Wyler; Nucl.Phys. B268 (1986) 621] & [Grzadkowski et al.; JHEP 1010 (2010) 085]

• Dimension 8: ~ 895 (36971) operators!

[Lehman et al.; PRD 91 (2015) 105014] & [Henning et al.; Comm.Math.Phys. 347 (2016) 2, 363]

EW Higgs production

- LHC can provide complementary information to existing fits to lower energy data, i.e. LEP
- Higgs comes with additional objects
 - We can construct kinematic observables probing the high energy regime
 - Higgs p_T, M_{VH}, leading lepton p_T, $\Delta \eta_{jj}$,...
- Look into the tails...
- Investigate validity of EFT expansion/interpretation given current constraints from global fits
- Consider future reach of HL-LHC to constrain relevant Wilson coefficients

D=6 operators

• SMEFT: Higgs-EW gauge boson operators in 'SILH' basis [Contino et al.; JHEP 1307 (2013) 35]

$$\mathcal{L}_{D6} = \frac{1}{\Lambda^2} \Big[\frac{g'^2}{4} \bar{c}_{BB} \Phi^{\dagger} \Phi B^{\mu\nu} B_{\mu\nu} + \frac{ig}{2} \bar{c}_W \Big[\Phi^{\dagger} T_{2k} \overleftrightarrow{D}^{\mu} \Phi \Big] D^{\nu} W_{\mu\nu}^k + \frac{ig'}{2} \bar{c}_B \Big[\Phi^{\dagger} \overleftrightarrow{D}^{\mu} \Phi \Big] \partial^{\nu} B_{\mu\nu} \\ + ig \bar{c}_{HW} \Big[D^{\mu} \Phi^{\dagger} T_{2k} D^{\nu} \Phi \Big] W_{\mu\nu}^k + ig' \bar{c}_{HB} \Big[D^{\mu} \Phi^{\dagger} D^{\nu} \Phi \Big] B_{\mu\nu} \\ + \frac{g'^2}{4} \tilde{c}_{BB} \Phi^{\dagger} \Phi B^{\mu\nu} \tilde{B}_{\mu\nu} + ig \tilde{c}_{HW} \Big[D^{\mu} \Phi^{\dagger} T_{2k} D^{\nu} \Phi \Big] \widetilde{W}_{\mu\nu}^k + ig' \tilde{c}_{HB} \Big[D^{\mu} \Phi^{\dagger} D^{\nu} \Phi \Big] \tilde{B}_{\mu\nu} \Big] \\ \Phi^{\dagger} \overleftrightarrow{D}^{\mu} \Phi \equiv \Big(D^{\mu} \Phi^{\dagger} \Big) \Phi - \Phi^{\dagger} \Big(D^{\mu} \Phi \Big)$$

• Anomalous couplings: new Lorentz structures (1) & (2): $\mathcal{L}_{HAC} = -\frac{1}{4}g_{hzz}^{(1)}Z_{\mu\nu}Z^{\mu\nu}h - g_{hzz}^{(2)}Z_{\nu}\partial_{\mu}Z^{\mu\nu}h + \frac{1}{2}g_{hzz}^{(3)}Z_{\mu}Z^{\mu}h - \frac{1}{4}\tilde{g}_{hzz}Z_{\mu\nu}\tilde{Z}^{\mu\nu}h \\
- \frac{1}{2}g_{hww}^{(1)}W^{\mu\nu}W_{\mu\nu}^{\dagger}h - \left[g_{hww}^{(2)}W^{\nu}\partial^{\mu}W_{\mu\nu}^{\dagger}h + \text{h.c.}\right] + g_{hww}^{(3)}W_{\mu}W^{\dagger\mu}h - \frac{1}{2}\tilde{g}_{hww}W^{\mu\nu}\tilde{W}_{\mu\nu}^{\dagger}h \\
- \frac{1}{2}g_{haz}^{(1)}Z_{\mu\nu}F^{\mu\nu}h - g_{haz}^{(2)}Z_{\nu}\partial_{\mu}F^{\mu\nu}h - \frac{1}{2}\tilde{g}_{haz}Z_{\mu\nu}\tilde{F}^{\mu\nu}h$

Limits from global fits

- Many global fits to data constrain EFT Wilson coefficients
 - LHC, LEP & other low-energy experiments
- Marginalised constraints from EWPO + LHC Run 1 data on coefficients of interest [Sanz et al.; JHEP 1503 (2015) 157]

Operator	Coefficient	Constraints	
$\mathcal{O}_W = \frac{ig}{2} \left(H^{\dagger} T_{2k} \overset{\leftrightarrow}{D^{\mu}} H \right) D^{\nu} W^k_{\mu\nu}$	$\frac{m_W^2}{\Lambda^2} \left(\frac{\bar{c}_W}{2} - \bar{c}_B\right)$	(-0.035,0.005)	stronger & weaker
$\mathcal{O}_B = \frac{ig'}{2} \left(H^{\dagger} \overset{\leftrightarrow}{D^{\mu}} H \right) \partial^{\nu} B_{\mu\nu}$	$\frac{m_W^2}{\Lambda^2} \left(\frac{\bar{c}_W}{2} + \bar{c}_B\right)$	(-0.0033, 0.0018)	directions
$\mathcal{O}_{HW} = ig(D^{\mu}H)^{\dagger}T_{2k}(D^{\nu}H)W^{k}_{\mu\nu}$	$rac{m_W^2}{\Lambda^2}ar{c}_{HW}$	(-0.07, 0.03)	
$\mathcal{O}_{HB} = ig'(D^{\mu}H)^{\dagger}(D^{\nu}H)B_{\mu\nu}$	$rac{m_W^2}{\Lambda^2}ar{c}_{HB}$	(-0.045, 0.075)	

See also: [Falkowksi & Riva; JHEP 1502 (2015) 039], [Berthier & Trott; JHEP 1505 (2015) 024], [Corbett et al.; JHEP 1508 (2015) 156], [Englert et al.; EPJC 76 (2016) 7, 393]

K. Mimasu

DIS2017, 04/04/2017

EFT Benchmarks

- Select (cw, cHw) benchmarks that:
 - Approximately saturate global fit limits
 - Select new Lorentz structures in the new vertices

$$\mathcal{L}_{\text{new}} = -\frac{1}{4} g^{(1)}_{hzz} V^{\mu\nu} V_{\mu\nu} h$$
$$-g^{(2)}_{hzz} V^{\nu} \partial^{\mu} V_{\mu\nu} h$$

- Tightly constrained direction in (c_B , c_W) forces $c_B \sim -c_W/2$
- Benchmarks that single out g⁽¹⁾ & g⁽²⁾ structures

$$Z^{\mu}(p)$$

$$H \quad i \left[\frac{g}{\cos \theta_W} M_Z + g_{hzz}^{(1)} \left(\eta^{\mu\nu} p \cdot q - q^{\mu} p^{\nu} \right) + g_{hzz}^{(2)} \left((p^2 + q^2) \eta^{\mu\nu} - p^{\mu} p^{\nu} + q^{\mu} q^{\nu} \right) \right]$$

$$Benchmark B \qquad Benchmark A$$

 Pattern B is a feature of matching conditions that arise in a large class of UV completions, e.g. 2HDM

> [Gorbahn, No & Sanz; JHEP 1510 (2015) 036] DIS2017. 04/04/2017

Selection of results

- WH, VBF differential distributions (MG5_aMC@NLO)
- Used PYTHIA8 for Higgs decay, PS and Hadronisation
 - Rescaled rates by eHDECAY BRs to capture EFT contributions [R. Contino et al.; Comp. Phys. Comm. 185 (2014) 3412-3423]
- Events were reconstructed using Fastjet thanks to MadAnalysis5 "reco" mode and analysed according to some realistic event selection procedure also in MA5
- Included a basic 'fiducial' event selection
- Theoretical uncertainties due to scale variation were quantified but not PDF uncertainties
 - Envelope of 9 combinations of (1/2, 2) x μ_0

[Degrande, Fuks, Mawatari, KM, Sanz; arXiv:1609.04833 (to appear in EPJC)]

HELatNLO

http://feynrules.irmp.ucl.ac.be/wiki/HELatNLO

- SMEFT implementation in FeynRules + NLOCT framework
 - Generate NLO UFO file & simulate with MG5_aMC@NLO ~ any process!
 - First results for VBF in SMEFT @ NLO in QCD
- Includes 5 operators affecting Higgs couplings to $W/Z/\gamma$
 - First step for EW Higgs production
- Builds upon previous LO implementation of full SILH basis
- Modification of EW parameters due to SILH operators taken into account in the (m_Z, α_S, G_F) input scheme [Alloul, Fuks & Sanz; JHEP 1404 (2014) 110]

Validated WH & ZH against existing POWHEG-BOX/ MCFM implementation [KM, Sanz & Williams.; JHEP 1608 (2016) 039]

$pp \rightarrow W^+ H \rightarrow I^+ v bb$

Flat K-factors (as expected) & consistent definition of scale uncertainty allows for more confident SM/EFT discrimination

DIS2017, 04/04/2017

$pp \rightarrow W^+ H \rightarrow I^+ v bb$

Benchmark B) does not exhibit strong "EFT" features \rightarrow The g_{hvv}⁽²⁾ Lorentz structure is responsible for these

EFT validity

- Relative size of SM/EFT interference (1/ Λ^2) and [EFT]² terms (1/ Λ^4) is a naive measure of the EFT validity
 - We don't (want to) include SM/D=8 interference
- Can be used to assess at which energy scales the expansion breaks down
 - Test how appropriate the EFT interpretation is given current constraints from global fits
- MG5_aMC@NLO provides this functionality (at LO)
 - Select only interference

Interference only (LO)

40-80% difference for our benchmarks...

A possible way to define an additional theory uncertainty?

K. Mimasu

DIS2017, 04/04/2017

pp → H j j→y y j j

Included "VBF" cuts on M_{jj} and $\Delta \eta_{jj}$ Smaller effects (25-50%), sensitivity to benchmark B

K. Mimasu

DIS2017, 04/04/2017

pp → H j j → ɣ ɣ j j

Correlating VH & VBF may help disentangle g⁽²⁾ coupling structure

K. Mimasu

DIS2017, 04/04/2017

Interference only (LO)

Interference vs. square much more under control. $\sim 10\%$ difference

K. Mimasu

HL-LHC prospects in VH

- 8 & 13 TeV analyses searching for VH \rightarrow IIbb
 - Large fit to many signal & control regions with some floating backgrounds
 - 13 TeV uses multivariate methods = difficult to recast without further info
- Performed a naive projection of the LHC 8 TeV analysis
 - Conservative with respect to the more sophisticated methods that will likely be employed in future updates in this channel
- Signal region: PTV > 200 GeV overflow bin in the single lepton channel (WH)
 - Background: determine the change in acceptance x efficiency for the dominant ttbar background from 8 to 13 TeV
 - Rescale fitted background in 8 TeV analysis to estimate contribution at 13 TeV

HL-LHC prospects in VH

- Also considered +1 jet category where ttbar contribution is even more dominant
- Single overflow bin of a single signal region ~ per mille sensitivity to CHW, CW with 3 ab⁻¹

Future

- Several separate implementations of SMEFT operators in different sectors now exist
- Working on a "merge" of these to obtain a complete SMEFT model at NLO in QCD
 - Full set of operators contributing to EW Higgs production processes
 - Validation of anomalous dimension matrix calculation
- Basis independent predictions will be accessible via Rosetta translation tool
 http://rosetta.hepforge.org
- Ultimate goal is to incorporate NLO QCD corrections in a global fit to LHC + low energy data

BACKUP

Ken Mimasu

DIS 2017 University of Birmingham

4th April 2017

SMEFT @ the LHC

EFT → AC map

Coupling	HEL@NLO
$g^{(1)}_{\scriptscriptstyle hzz}$	$\frac{e^2 v}{2\hat{c}_W^2 \hat{s}_W^2} \frac{1}{\Lambda^2} \left[\hat{c}_W^2 \bar{c}_{HW} + 2\hat{s}_W^2 \bar{c}_{HB} - 2\hat{s}_W^4 \bar{c}_{BB} \right]$
$g^{(2)}_{\scriptscriptstyle hzz}$	$\frac{e^2 v}{4\hat{s}_W^2 \hat{c}_W^2 \Lambda^2} \left[\hat{c}_W^2 (\bar{c}_{HW} + \bar{c}_W) + 2\hat{s}_W^2 (\bar{c}_B + \bar{c}_{HB}) \right]$
$g^{(3)}_{\scriptscriptstyle hzz}$	$\frac{g^2 v}{2\hat{c}_W^2} + \frac{e^4 v^3}{8\hat{c}_W^4 \hat{s}_W^2 \Lambda^2} \left[\hat{c}_W^2 \bar{c}_W + 2\bar{c}_B \right]$
$g^{(1)}_{\scriptscriptstyle haz}$	$\frac{e^2 v}{4\hat{s}_W \hat{c}_W \Lambda^2} \left[\bar{c}_{HW} - 2\bar{c}_{HB} + 4\hat{s}_W^2 \bar{c}_{BB} \right]$
$g^{(2)}_{\scriptscriptstyle haz}$	$\frac{e^2 v}{4\hat{s}_W \hat{c}_W \Lambda^2} \left[\bar{c}_{HW} + \bar{c}_W - 2(\bar{c}_B + \bar{c}_{BB}) \right]$
$g^{(1)}_{{}_{hww}}$	$\frac{e^2 v}{2\hat{s}_W^2 \Lambda^2} \bar{C}_{HW}$
$g^{(2)}_{hww}$	$\frac{ve^2}{4\Lambda^2 \hat{s}_W^2} \left[\bar{c}_W + \bar{c}_{HW} \right]$
$g^{(3)}_{{\scriptscriptstyle h}ww}$	$\frac{g^2v}{2}$

[Trott & Passarino; LHCHXSWG-DRAFT-2016-005] [Falkowski et.al; LHCHXSWG-INT-2015-001]

[Williams, KM & Sanz; JHEP 1608 (2016) 039] [Ge, He & Xiao; JHEP 1610 (2016) 007] [Degrande, Fuks, Mawatari, KM, Sanz; 1609.04833]

SM inputs

$$\mathcal{O}_{H} = \frac{\bar{c}_{H}}{2} \partial_{\mu} \left(\Phi^{\dagger} \Phi \right) \partial^{\mu} \left(\Phi^{\dagger} \Phi \right)$$

$$= \frac{\bar{c}_{H}}{\Lambda^{2}} \frac{v^{2}}{2} \partial_{\mu} h \partial^{\mu} h + \mathcal{O}(h^{3}, h^{2})$$

$$h \rightarrow h(1 + \delta h), \quad \delta h = -\frac{\bar{c}_{H}}{\Lambda^{2}} \frac{v^{2}}{4}$$

$$\mathcal{O}_{W}|_{\Phi=\langle\Phi\rangle} = \frac{ig}{2} \bar{c}_{W} \left[\Phi^{\dagger} T_{2k} \overleftarrow{D}^{\mu} \Phi \right] D^{\nu} W_{\mu\nu}^{k}|_{\Phi=\langle\Phi\rangle}$$

$$= \frac{gv^{2}}{16} \bar{c}_{W} \left[2gW_{+}^{\mu\nu}W_{\mu\nu}^{-} + g(W_{3}^{\mu\nu} - g'B^{\mu\nu})W_{\mu\nu}^{3} \right] + aGC$$

$$W_{\pm}^{\mu} \rightarrow W_{\pm}^{\mu} \left[1 + \delta W \right]$$

$$B^{\mu} \rightarrow B^{\mu} \left[1 + \delta B \right] + yW_{3}^{\mu}$$

$$W_{3}^{\mu} \rightarrow W_{3}^{\mu} \left[1 + \delta W \right] + zB^{\mu}$$

• After EWSB, canonical mass eigenbasis, different from SM

- Perform field & coupling redefinitions to fix their normalisation
- Modifications of gauge bosons masses, interactions, e.g., Z→ff
- Modifications to the SM parameters as a function of EW inputs
- Can also affect backgrounds!
- Not all tools take these into account
 - Various choices can be made that are all equivalent up to dimension-6

Feynman Rules

$$\begin{cases} i \left[\eta^{\mu\nu} \left(gM_W + g_{hww}^{(1)} p \cdot q + g_{hww}^{(2)} \left(p^2 + q^2 \right) \right) - \\ g_{hww}^{(1)} q^{\mu} p^{\nu} - \tilde{g}_{hww} \epsilon^{\mu\nu\rho\sigma} q_{\rho} p_{\sigma} - g_{hww}^{(2)} \left(p^{\mu} p^{\nu} + q^{\mu} q^{\nu} \right) \\ W_{-}^{\nu}(q) \end{cases}$$

*Inflowing1mom/en/ta17

K. Mimasu

[KM, Sanz, Williams; JHEP 1608 (2016) 039]

POWHEG-BOX/MCFM

- Higgs associated production with a leptonically decaying W or Z at NLO in QCD matched to parton shower
 - Include EFT effects via a mapping to AC/HC (also CP violating)
- At NLO, the initial state current factorises from the final state, even when the Higgs decays to b's
 - Drell-Yan-like NLO corrections which are well known
- Builds upon previous work in the SM matched to parton shower in the same framework as well as fixed order predictions including anomalous couplings
- Matrix elements based on MCFM code interfaced with POWHEG-BOX for which the SM process was already implemented

Selection

MA5 performs b-jet identification based on truth level jet information (presence of b-hadrons in jet)

$gg \rightarrow Z H \rightarrow I+I-bb$

- gg initiated process (formally NNLO)
 - Gluon PDF plus kinematics of EFT searches warrant its inclusion
 - Well known to 'mimic' EFT effects if not properly taken into account

K. Mimasu

$pp \rightarrow Z H \rightarrow |+|-bb$

* Benchmark II does not show "EFT-like" features

K. Mimasu 22/03/2017

$pp \rightarrow Z H \rightarrow |+|-bb$

Nj exhibits some difference but stats too low to distinguish

K. Mimasu

[Maltoni, Vryonidou & Zhang; JHEP 1610 (2016) 123]

New EFT scale uncertainty

- NLO calculations use scale uncertainty to approximate missing higher orders in perturbative expansion
 - EFT description contains an additional source of scale dependence from the running/mixing of Wilson coefficients
- Proposal for a new scale uncertainty component
 - Take c_i defined at scales $2\mu_0$ & $\mu_0/2$ and run back to the central scale

K. Mimasu

Does not cancel in e.g. cross section ratios for which traditional scale uncertainty drops out