

New limits on heavy neutrino at NA62

Chris Parkinson, University of Birmingham on behalf of the NA62 collaboration

5th April 2017

Motivation

- There are various extensions of the Standard Model that accommodate massive neutrinos
- Typically heavy neutrino mass states are introduced to drive the SM neutrino masses to small values via the see-saw mechanism
- These heavy mass states mix with the SM flavour states

Chris Parkinson

- Many existing limits require the heavy neutrino to decay within the fiducial volume of the experiment
- This is not required at decay-in-flight Kaon experiments like NA62 where "missing mass" methods can be used
- NA62 makes a measurement of heavy neutrino production
 - NB limits on production scale linearly with the number of Kaons

$$p_{\rm K}$$

$$p_{\rm miss} = \sqrt{\left(p_{\rm K} - p_{\mu}\right)^2}$$

$$p_{\rm N}$$

• The missing mass is the mass of the heavy neutrino

$$m_{\rm h}^2 = p_{\rm N}^2 = (p_{\rm K} - p_{\mu})^2$$

New limits on heavy neutrino at NA62

Existing production measurements

Kaon experiments at CERN

- The NA62 experiment is located at the North Area (NA) of CERN
 - Protons are extracted from the SPS with p=400 GeV/c
 - The protons impinge on a target, producing a secondary beam of hadrons
 - About six percent of those hadrons are Kaons

NA62: currently ~200 collaborators from 28 institutes around the world

Chris Parkinson

The NA62 (2007) detector

Principal detector systems

- Scintillator hodoscope (HOD)
 - Low-level trigger, time measurement (150ps)
- Magnetic spectrometer (4 DCHs)
 - 4 views/DCH high efficiency
 - $\sigma_p/p = 0.48\% \oplus 0.009\% \cdot p [GeV/c]$
- Liquid Krypton EM calorimeter (LKr)
 - High granularity, quasi-homogeneous
 - $\sigma_{E}/E = (3.2/VE \oplus 9.0/E \oplus 0.42)\%$ [GeV/c]
 - − $\sigma_x = \sigma_y = (4.2/VE \oplus 0.6)$ mm (1.5mm @ 10GeV)
- Muon veto system (MUV)

Data taking conditions

- $P_{K} = 74 \pm 2 \text{ GeV/c}$
- Triggers: 1-track e⁺, 1-track μ⁺
- Alternate K⁺/K⁻ beam, possibility to block both beams (K_{less})

Data sample (2007)

Dataset collected in during 2007

Trigger requirement:

- One-track μ^{\pm} trigger (downscaling = 150)

Selection requirements:

- One positively-charged muon track
- No cluster of energy deposition with
 E > 2GeV not associated with the track
- Multi-dimensional cuts in
 (z_{vtx}, θ, p, CDA, φ) to suppress halo muons
- Signal region: 300 < m_{miss} < 375 MeV/c²

Around 8M $K^+ \rightarrow \mu^+ \nu_{\mu}$ decays satisfy the trigger and selection criteria

Upper limit on signal events

- Set a limit on the number of heavy neutrino decays n_{UL}(m_h) using the Rolke-Lopez method [<u>ref</u>]
 - n_{UL}(m_h) obtained from numbers of n_{obs} and n_{expected} events, and the uncertainty on n_{expected}
 - Step size of 1MeV/c², window size defined by heavy neutrino mass resolution

Background estimation

- Set a limit on the number of heavy neutrino decays n_{UL}(m_h) using the Rolke-Lopez method [<u>ref</u>]
 - n_{UL}(m_h) obtained from numbers of n_{obs} and n_{expected} events, and the uncertainty on n_{expected}
- Dominant systematic uncertainty in the signal region is from halo muons
 - These muons are produced along the beamline, but nevertheless pass through the NA62 fiducial volume
 - Extensively studied to reduce their contribution in the signal region
 - Remaining contribution modelled using K⁻ and K_{less} data-taking periods

New limits on heavy neutrino at NA62

Upper limit on signal events

- Set a limit on the number of heavy neutrino decays n_{UL}(m_h) using the Rolke-Lopez method [<u>ref</u>]
 - n_{UL}(m_h) obtained from numbers of n_{obs} and n_{expected} events, and the uncertainty on n_{expected}

Interpretation of the upper limit

The limit on n_{UL} can be converted into a limit on the branching fraction...

Chris Parkinson

11

Comparison with existing measurements ¹²

 NA62 (2007) sets the world's most stringent limit on heavy neutrino production in the mass region 325 < m_h < 375 MeV/c²

The NA62 (2015) detector

- Key improvements for v_h production measurements since 2007:
 - **BEAM:** intensity increased by a factor of 90
 - KTAG: precise measurement of Kaon time (~80ps) provides dramatic reduction in size of halo background
 - **GTK:** factor 3 improvement in missing mass resolution
 - Hermetic photon vetoes (LAV, IRC, SAC): π^0 veto reduces largest background contributions from Kaon decays (K⁺ $\rightarrow \pi^0 \mu^+ \nu$)
 - MUV and RICH: excellent separation of pions and muons

Chris Parkinson

New limits on heavy neutrino at NA62

NA62 2015 minimum-bias data

- In 2015 NA62 collected five days of minimum bias data
- Preliminary analysis of the data shows:
 - − Around 23M $K^+ \rightarrow \mu^+ \nu_{\mu}$ decays satisfy the trigger and selection criteria
 - Background level more than 100x lower than in 2007
 - Single event sensitivity close to 10⁻⁸

NA62 2015 minimum-bias data

- In 2015 NA62 collected five days of minimum bias data
- Preliminary analysis of the data shows:
 - About 1500 $K^+ \rightarrow e^+ v_e$ decays satisfy the trigger and selection criteria
 - Background is low enough to improve current limits by an order of magnitude

Conclusion

- A measurement of heavy neutrino production at NA62 (2007) was presented
 - More than 8M $K^+ \rightarrow \mu^+ \nu_{\mu}$ events selected
 - World's most stringent limits on $|U_{\mu4}|^2$ are set between 325 < m_h < 380MeV/c²
 - Journal publication in preparation

- The NA62 2015 experimental setup was outlined
 - Several improvements in the experimental setup relevant to measurements of heavy neutrino production were identified

- Prospects for the analysis of NA62 data collected in 2015 was shown
 - More than 23M $K^+ \rightarrow \mu^+ v_{\mu}$ events selected from five days of data taking
 - Background level reduced by a factor of 100 compared to 2007 data
 - Good prospects for analysis of $K^+ \rightarrow e^+ v_e$ events