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Collinear and TMD densities from Parton Branching Method

Motivation

Advantages of the parton branching method

To be discussed today:

a parton branching method in analogy to a Parton Shower (PS) but used to solve DGLAP
evolution equation.

Parton branching solution reproduces exactly semi-analytical results for collinear PDFs.

Similar codes exist (use similar formalism):
example: evolution code EvolFMC by Cracow group
S. Jadach et al., Markovian Monte Carlo program EvolFMC v.2 for solving QCD evolution equations, Comput.Phys.Commun. 181 (2010) 393-412

Advantages of the parton branching method

A possibility of:

I studying different orderings (QT -ordering, virtuality ordering, angular ordering)
(this will be not discussed in detail here),

I extraction of TMDs (structure of the grid suitable for usage in xFitter)
(this will be discussed).
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Motivation

Why Transverse Momentum Dependent PDFs?

Goal: TMD PDFs for all flavours, all x , µ2 and kT
What is Transverse Momentum Dependent (TMD) Parton Distribution Function (PDF)?

I TMD PDF is a generalization of a concept of the PDF.

I TMD: depends not only on x and µ2 but also on kT : TMD(x , µ2, kT )

TDMs are important in studies on:

I resummation of all orders in the QCD coupling to many observables in high-energy hadronic
collisions,

I nonperturbative information on hadron structure at very low kT ,

I perturbative region where QCD evolution equations describe processes

I a proper and consistent simulation of parton showers,

I multi-scale problems in hadronic collisions,

I ...
Acta Physica Polonica B, Vol. 46 (2015)
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Introduction to the method

DGLAP evolution equation

DGLAP evolution equation for momentum weighted parton density xf (x , µ2) = f̃ (x , µ2)

df̃a(x , µ2)

d lnµ2
=
∑
b

∫ 1

x
dzPab

(
αs(µ2), z

)
f̃b

( x
z
, µ2
)

(1)

a, b- quark (2Nf flavours) or gluon, x- longitudinal momentum fraction of the proton carried by a parton a,

z =
xi

xi−1
- splitting variable, µ- evolution mass scale

splitting function:

Pab

(
αs(µ2), z

)
= Dab

(
αs(µ2)

)
δ(1− z) + Kab

(
αs(µ2)

) 1

(1− z)+
+ Rab

(
αs(µ2), z

)
, (2)

∫ 1
0 f (x)g(x)+dx =

∫ 1
0 (f (x) − f (1))g(x)dx

Rab

(
αs (µ2), z

)
has no power divergences (1 − z)−n for z → 1 .

As long as Pab

(
αs(µ2), z

)
has this structure, the formalism presented today can be applied (LO,

NLO, NNLO).

7 / 23



Collinear and TMD densities from Parton Branching Method

Introduction to the method

DGLAP evolution equation

DGLAP evolution equation for momentum weighted parton density xf (x , µ2) = f̃ (x , µ2)

df̃a(x , µ2)

d lnµ2
=
∑
b

∫ 1

x
dzPab

(
αs(µ2), z

)
f̃b

( x
z
, µ2
)

(1)

a, b- quark (2Nf flavours) or gluon, x- longitudinal momentum fraction of the proton carried by a parton a,

z =
xi

xi−1
- splitting variable, µ- evolution mass scale

splitting function:

Pab

(
αs(µ2), z

)
= Dab

(
αs(µ2)

)
δ(1− z) + Kab

(
αs(µ2)

) 1

(1− z)+
+ Rab

(
αs(µ2), z

)
, (2)

∫ 1
0 f (x)g(x)+dx =

∫ 1
0 (f (x) − f (1))g(x)dx

Rab

(
αs (µ2), z

)
has no power divergences (1 − z)−n for z → 1 .

As long as Pab

(
αs(µ2), z

)
has this structure, the formalism presented today can be applied (LO,

NLO, NNLO).

Two potential problems for numerical solution: (details in Backup!)

I presence of the delta function → solved by momentum sum rule∑
c

∫ 1
0 dzzPca

(
αs(µ2), z

)
= 0,

I integrals separately divergent for (z → 1) → solved by a parameter zM :
∫ 1
x →

∫ zM
x
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Introduction to the method

Sudakov formalism

After some algebraic transformations:

df̃a(x , µ2)

d lnµ2
=
∑
b

∫ zM

x
dz PR

ab

(
αs(µ2), z

)
f̃b

( x
z
, µ2
)
−f̃a

(
x , µ2

)∑
c

∫ zM

0
dz zPR

ca

(
αs(µ2), z

)
(3)

where PR
ab

(
αs(µ2), z

)
= Rab

(
αs(µ2), z

)
+ Kab

(
αs(µ2)

)
1

1−z
- real part of the splitting function.

Define the Sudakov form factor:

∆a(µ2) = exp

(
−
∫ lnµ2

lnµ2
0

d
(
lnµ′2

)∑
b

∫ zM

0
dzzPR

ba

(
αs(µ′2), z

))
(4)

insert it in Eq.(3) and integrate

f̃a(x , µ2) = f̃a(x , µ2
0)∆a(µ2) +

∫ lnµ2

lnµ2
0

d lnµ′2
∆a(µ2)

∆a(µ′2)

∑
b

∫ zM

x
dzPR

ab

(
αs(µ′2), z

)
f̃b

( x
z
, µ′2

)
.

(5)
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Introduction to the method

Iterative solution

Example for a= gluon:

f̃a(x, µ2) = f̃a(x, µ2
0)∆a(µ2)+

∫ lnµ2

lnµ2
0

d lnµ′2
∆a(µ2)

∆a(µ′2)

∑
b

∫ zM

x
dzPR

ab

(
αs (µ′2), z

)
f̃b

(
x

z
, µ

2
0

)
∆b(µ′2) + ...

Sudakov: probability of evolving from
µ2

0 to µ2 without any resolvable
branching.

OR

Sudakov: probability of evolving from
µ2

0 to µ2 without any resolvable
branching.

This problem has an iterative solution which can be easily implemented in the MC code.
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Collinear PDFs from parton branching method

LO comparison with semi analytical methods

Initial distribution: f̃b0
(x0, µ

2
0) - from QCDnum

The evolution performed with parton branching method up to a given scale µ2.
Obtained distribution compared with a pdf calculated at the same scale by semi analytical method (QCDnum)
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Upper plots: collinear pdfs from the parton branching method
Lower plots: ratios of the pdfs from a parton branching method and pdfs from QCDnum.

Very good agreement with the results coming from semi analytical methods (QCDnum).
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Collinear PDFs from parton branching method

NLO comparison with semi analytical methods

Initial distribution: f̃b0
(x0, µ

2
0) - from QCDnum

The evolution performed with parton branching method up to a given scale µ2.
Obtained distribution compared with a pdf calculated at the same scale by semi analytical method (QCDnum)
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Upper plots: collinear pdfs from the parton branching method
Lower plots: ratios of the pdfs from a parton branching method and pdfs from QCDnum.

Very good agreement with the results coming from semi analytical methods (QCDnum).
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Collinear PDFs from parton branching method

Cross check for different zM
Comparison of the results for different zM values .

Upper plot: collinear pdfs from a MC method
Lower plot: ratios of the pdfs from a MC method
and pdfs from QCDnum.

There is no dependence on zM as long
as zM large enough.

Here results at NLO, at LO the same conclusion.
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Results for TMDs

kT dependence

Parton branching method: for every branching µ2 is generated and available.

How to connect µ with QT of the emitted and kT of the propagating parton?

I QT - ordering:
−→
Q 2

T ,n = µ2.

I virtuality ordering:
−→
Q 2

T ,n = (1− z)µ2

−→
k T ,n =

−→
k T ,n−1 −

−→
Q T ,n

kT contains the whole history of the evolution.
In this method kT is treated properly from the beginning of the evolution- no extra reshuffling at

the end is required.
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Results for TMDs

TMD PDFs from different kT definition at LO
Reminder: for collinear PDFs there was no zM dependence.

What about zM dependence for TMDs?

QT - ordering:
−→
Q 2

T,n = µ2 virtuality ordering:
−→
Q 2

T,n = (1 − z)µ2

large z - soft gluons!
QT - ordering: for every zM value we obtain different TMD
→ not physical behaviour, QT - ordering shouldn’t be used

Virtuality ordering: no zM dependence (because of the (1− z) term soft gluons suppressed)
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Fit of integrated TMDs for all flavours to HERA DIS data with xFitter

Procedure of the fit to the HERA 1+2 F2 data

Goal: TMD PDF sets for all flavours, all x , Q2 and kT

I A kernel Ab
a is determined from the parton branching method

from a toy starting distribution: f0,b = δ(1− x).

I xFitter chooses a starting distribution A0,b and performs a

convolution of the kernel Ab
a with the starting distribution A0,b

to obtain a parton density

f̃a(x , µ2) =

∫ ∞
0

dk2
T

k2
T

∫
dx ′A0,b(x ′)

x ′

x
Ab
a

(
x ′

x
, k2

T , µ
2

)
︸ ︷︷ ︸

f̃a(x,µ2,k2
T

)

(6)

I Obtained parton density f̃a(x , µ2) is fitted to the F2 data and
χ2 is calculated.
Data: arXiv:1506.06042v3, Abramowicz, H. and others.

I The procedure is repeated with the new starting distributions
A0,b many times to minimize χ2.

0.01 0.1

  
re

d
σ 

0.5−

0

0.5

1

1.5

2 X (NC) + e→p +e

 = 150 2HERA1+2 Data Q
 uncorrelatedδ
 totalδ  

 x 
0.01 0.1T

h
eo

ry
/D

at
a

0.95

1

1.05

A very good χ2/ndf ∼ 1.2 is obtained for 3.5 < Q2 < 30000 GeV2 and x > 4 · 10−5.
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Fit of integrated TMDs for all flavours to HERA DIS data with xFitter

TMDs from fits - comparison of LO and NLO TMDs

TMDs with experimental uncertainties. Comparison of the LO and NLO TMDs.

TMDs were fitted with experimental uncertainties at LO and NLO.
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Fit of integrated TMDs for all flavours to HERA DIS data with xFitter

TMDs from the fit at NLO

From parton branching method we can obtain TMDs for all flavours

At small kT (no branching or just a few branchings), the difference in the quark TMDs comes
from initial distributions.
At large kT (many branchings) TMDs for quarks the same.

TMDs sets available soon!

→ check on TMDplotter and TMDlib
http://tmdplotter.desy.de/
http://https://tmdlib.hepforge.org/doxy/html/index.html
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Summary

Summary

New approach to solve coupled gluon and quark DGLAP evolution equation with a parton
branching method was shown.

Advantages:

I it reproduces exactly semi-analytical solution for collinear PDFs (results consistent with
QCDNum),
moreover:

I extraction of TMD PDFs possible and done,
fit to F2 Hera data at LO and NLO was performed within xFitter,
TMDs sets for all flavours were obtained from the fit with experimental uncertainties,

I options to study different orderings for collinear and TMD PDFs available within this
framework.

Prospects:

I TMD sets released soon,

I application in measurements,

I long term goal: direct usage in PS matched calculation.
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Summary

Thank you!
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Back up

DGLAP evolution equation

DGLAP evolution equation

DGLAP evolution equation for momentum weighted parton density xf (x, µ2) = f̃ (x, µ2)

df̃a(x , µ2)

d lnµ2
=
∑
b

∫ 1

x
dzPab

(
αs(µ2), z

)
f̃b

( x
z
, µ2
)

(7)

a, b- quark (2Nf flavours) or gluon, x- longitudinal momentum fraction of the proton carried by a parton a,

z =
xi

xi−1
- splitting variable, µ- evolution mass scale and

a structure of a splitting function:

Pab

(
αs(µ2), z

)
= Dab

(
αs(µ2)

)
δ(1− z) + Kab

(
αs(µ2)

) 1

(1− z)+
+ Rab

(
αs(µ2), z

)
, (8)

∫ 1
0 f (x)g(x)+dx =

∫ 1
0 f (x)g(x)dx −

∫ 1
0 f (1)g(x)dx

Dab

(
αs (µ2)

)
= δabda

(
αs (µ2)

)
, Kab

(
αs (µ2)

)
= δabka

(
αs (µ2)

)
,

Rab

(
αs (µ2), z

)
contains logarithmic terms in ln(1 − z) and has no power divergences (1 − z)−n for z → 1 .

df̃a(x , µ2)

d lnµ2
=
∑
b

∫ 1

x
dz

(
Kab

(
αs(µ2)

) 1

(1− z)
+ Rab

(
αs(µ2), z

))
f̃b

( x
z
, µ2
)

+

−
∑
b

f̃b
(
x , µ2

) ∫ 1

0
dz

(
Kab

(
αs(µ2)

) 1

(1− z)
− Dab

(
αs(µ2)

)
δ(1− z)

)
(9)

Two potential problems for numerical solution:
I presence of the delta function,
I integrals separately divergent for z → 1.
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)
= δabka

(
αs (µ2)

)
,

Rab

(
αs (µ2), z

)
contains logarithmic terms in ln(1 − z) and has no power divergences (1 − z)−n for z → 1 .

df̃a(x , µ2)

d lnµ2
=
∑
b

∫ 1

x
dz

(
Kab

(
αs(µ2)

) 1

(1− z)
+ Rab

(
αs(µ2), z

))
f̃b

( x
z
, µ2
)

+

−
∑
b

f̃b
(
x , µ2

) ∫ 1

0
dz

(
Kab

(
αs(µ2)

) 1

(1− z)
− Dab

(
αs(µ2)

)
δ(1− z)

)
(9)

Two potential problems for numerical solution:
I presence of the delta function,
I integrals separately divergent for z → 1. 2 / 8



Collinear and TMD densities from Parton Branching Method

Back up

DGLAP evolution equation

Momentum sum rule

To get rid of the delta function:

We use momentum sum rule
∑

c

∫ 1
0 dzzPca

(
αs (µ2), z

)
= 0:

df̃a(x , µ2)

d lnµ2
=
∑
b

∫ 1

x
dz

(
Kab

(
αs(µ2)

) 1

(1− z)
+ Rab

(
αs(µ2), z

))
f̃b

( x
z
, µ2
)

+

−
∑
b

f̃b
(
x , µ2

) ∫ 1

0
dz

(
Kab

(
αs(µ2)

) 1

(1− z)
− Dab

(
αs(µ2)

)
δ(1− z)

)
+

−f̃a(x , µ2)
∑
c

∫ 1

0
dzzPca

(
αs(µ2), z

)
=

=
∑
b

∫ 1

x
dz

(
Kab

(
αs(µ2)

) 1

1− z
+ Rab

(
αs(µ2), z

))
f̃b

( x
z
, µ2
)

+

− f̃a
(
x , µ2

)∑
c

∫ 1

0
dz z

(
Kca

(
αs(µ2)

) 1

1− z
+ Rca

(
αs(µ2), z

))
(10)

We got rid of the delta function,
both pieces of the equation written in the same way.
Virtual and non-resorvable pieces still included.
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Collinear and TMD densities from Parton Branching Method

Back up

DGLAP evolution equation

Divergence for z → 1
To avoid divergence when z → 1 a cut off must be introduced:

∑
b

∫ 1

x
dz

(
Kab

(
αs(µ2)

) 1

1− z
+ Rab

(
αs(µ2), z

))
f̃b

( x
z
, µ2
)

+

− f̃a
(
x , µ2

)∑
c

∫ 1

0
dz z

(
Kca

(
αs(µ2)

) 1

1− z
+ Rca

(
αs(µ2), z

))
→
∑
b

∫ zM

x
dz

(
Kab

(
αs(µ2)

) 1

1− z
+ Rab

(
αs(µ2), z

))
f̃b

( x
z
, µ2
)

+

− f̃a
(
x , µ2

)∑
c

∫ zM

0
dz z

(
Kca

(
αs(µ2)

) 1

1− z
+ Rca

(
αs(µ2), z

))
(11)

It can be shown that terms
∫ 1
zmax skipped in the integral in eq. (11) are of order O(1− zmax ) .

Different choices of zmax :
I zmax - fixed
I zmax - can change dynamically with the scale:

angular ordering: zmax = 1−
(

Q0
Q

)
or virtuality ordering: zmax = 1−

(
Q0
Q

)2

In this presentation: results from fixed zmax .
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Collinear and TMD densities from Parton Branching Method

Back up

Sudakov formalism

Sudakov form factor

df̃a(x , µ2)

d lnµ2
=
∑
b

∫ zM

x
dz PR

ab

(
αs(µ2), z

)
f̃b

( x
z
, µ2
)
− f̃a

(
x , µ2

)∑
c

∫ zM

0
dz zPR

ca

(
αs(µ2), z

)
(12)

where PR
ab

(
αs (µ2), z

)
= Rab

(
αs (µ2), z

)
+ Kab

(
αs (µ2)

)
1

1−z
- real part of the splitting function.

Defining the Sudakov form factor:

∆a(µ2) = exp

(
−
∫ lnµ2

lnµ2
0

d
(
lnµ′2

)∑
b

∫ zM

0
dzzPR

ba

(
αs(µ′2), z

))
(13)

df̃a(x , µ2)

d lnµ2
=
∑
b

∫ zM

x
dzPR

ab

(
αs(µ2), z

)
f̃b

( x
z
, µ2
)

+ f̃a
(
x , µ2

) 1

∆a(µ2)

d∆a(µ2)

d lnµ2
, (14)
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Collinear and TMD densities from Parton Branching Method

Back up

TMDs from fits at LO

TMDs from the fit at LO

From parton branching method we can obtain TMDs for all flavours

At small kT (no branching or just a few branchings), the difference in the quark TMDs comes from initial distributions.
At large kT (many branchings) TMDs for quarks the same.
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Back up

TMDs from fits at LO

integrated TMD from parton branching method and HERA pdf
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Back up

TMDs from fits at LO

Role of the limit in kT integration

Comparison of int TMDs integrated up to a diffent kT values

The integral over kT has to be performed up to a value higher than the evolution scale to obtain collinear PDF which agrees well
with the HERA pdf.
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