Exploring the Proton Spin with Di-jets at a Future EIC

Brian Page
Brookhaven National Laboratory
DIS 2017 - Birmingham
Simulation Details / Particle Cuts

- Electron – Proton events generated using PYTHIA

- Cut on inelasticity: $0.01 \leq y \leq 0.95$

- Jet Algorithm: Anti_\text{k}_T (R = 1.0)

- Jets found in Breit frame

- Particles used in jet finding:
 - Stable
 - $p_T \geq 250$ MeV
 - $\eta \leq 4.5$
 - Parent cannot originate from scattered electron
Jets at an EIC: Points to Remember

- Lower center of mass energies will lead to lower jet / di-jet yields and more limited p_T/mass reach

- Will need largest available energies and high luminosity to accumulate reasonable statistics at high p_T/mass – use $\sqrt{s} = 141$ GeV for all that follows
Jets at an EIC: Points to Remember

- Lower center of mass energies will lead to lower jet / di-jet yields and more limited p_T / mass reach

- Will need largest available energies and high luminosity to accumulate reasonable statistics at high p_T / mass – use $\sqrt{s} = 141$ GeV for all that follows

• Jets contain relatively few particles overall

• Events are quite clean with little underlying event activity

• Typical particle p_T is small -> precision tracking important for reducing jet energy scale uncertainties

Q$^2 = 10 - 100$ GeV2
Jet / Di-jet Applications

- **Electron – Nucleus Collisions**
 - Nuclear PDFs
 - Medium Modification / Energy Loss
 - Hadronization and Confinement

- **Electron – Proton Collisions**
 - High – x Proton PDFs
 - Proton Orbital Angular Momentum / Gluon Wigner Distribution at Low x (Diffractive Di-jets)
 - Saturation (Diffractive Di-jets)
 - (Un)polarized Photon PDFs
 - PGF Tagging for Proton ΔG
Current fits to polarized DIS data give $\Delta \Sigma = 0.366^{+0.042}_{-0.062}$ for $10^{-3} < x < 1$.

This leaves over half of the proton spin budget unaccounted for – is any spin carried by the gluons?

Polarized p+p collision data from RHIC have placed strong constraints on ΔG for $x > 0.05$ and given evidence of non-zero gluon contribution, but large uncertainties at low x will remain.

Need high precision and wide kinematic reach to solve spin puzzle.

Uncertainties on low-x region will still be sizable with RHIC data.
Accessing ΔG in DIS

- Several observables are sensitive to ΔG in DIS but golden measurement at an EIC would be scaling violation of $g_1(x, Q^2)$

\[\frac{dg_1(x, Q^2)}{d\ln(Q^2)} \approx -\Delta g(x, Q^2) \]

- Current DIS constraints on ΔG hampered by limited x & Q^2 coverage

- EIC would greatly expand kinematic reach and precision of $g_1(x, Q^2)$ measurements!

arXiv:1206.6014
Gluons can be probed in DIS via the higher-order photon gluon fusion process.

Also have the QCD–Compton process which probes quarks at the same order.

Both processes produce 2 angularly separated hard partons—Di-jet.

At lower Q^2, resolved processes in which the photon assumes a hadronic structure begin to dominate.

Asymmetry is a convolution of polarized PDF from the proton and polarized photon structure—which is completely unconstrained.

Would like to suppress the resolved component.
Gluons can be also be probed in DIS via the higher-order photon gluon fusion process.

Also have the QCD – Compton process which probes quarks at the same order.

Both processes produce 2 angularly separated hard partons - Di-jet.

At lower Q², resolved processes in which the photon assumes a hadronic structure begin to dominate.

Asymmetry is a convolution of polarized PDF from the proton and polarized photon structure - which is completely unconstrained.

Would like to suppress the resolved component.
• Gluons can be also be probed in DIS via the higher-order photon gluon fusion process

• Also have the QCD – Compton process which probes quarks at the same order

• Both processes produce 2 angularly separated hard partons -> Di-jet

Gluon Polarization with Di-jets
Gluon Polarization with Di-jets

- Gluons can be also be probed in DIS via the higher-order photon gluon fusion process.
- Also have the QCD – Compton process which probes quarks at the same order.
- Both processes produce 2 angularly separated hard partons -> Di-jet.
- At lower Q2, resolved processes in which the photon assumes a hadronic structure begin to dominate.
- Asymmetry is a convolution of polarized PDF from the proton and polarized photon structure – which is completely unconstrained.
- Would like to suppress the resolved component.
Direct Vs Resolved Processes

\[X_\gamma = \frac{1}{2Ee^y} \left(m_{T1}e^{-y_1} + m_{T2}e^{-y_2} \right) \]

- Plot reconstructed \(X_\gamma \) for direct and resolved processes
- Direct processes should concentrate toward 1 while resolved processes are at lower values
- Direct processes dominate at higher \(Q^2 \) while resolved are more prevalent at low \(Q^2 \)
- Cut of \(X_\gamma > 0.8 \) enhances the direct fraction at all \(Q^2 \)
Proton Partonic Kinematics

- To measure ΔG, need to probe the parton coming from the proton
- Momentum fraction of the parton from proton is well reconstructed

$$X_p = \frac{1}{2E_P} \left(m_{T1} e^{y_1} + m_{T2} e^{y_2} \right)$$
Proton Partonic Kinematics

\[X_P = x_B \left(1 + \frac{M^2}{Q^2}\right) \]

- To measure \(\Delta G \), need to probe the parton coming from the proton
- Momentum fraction of the parton from proton is well reconstructed
- \(X_P \) is related to Bjorken-\(x \) and \(Q^2 \) at leading order
Proton Partonic Kinematics

\[X_P = x_B \left(1 + \frac{M^2}{Q^2} \right) \]

\[Q^2 = s y x_B \]

- To measure ΔG, need to probe the parton coming from the proton
- Momentum fraction of the parton from proton is well reconstructed
- \(X_P \) is related to Bjorken-x and \(Q^2 \) at leading order
- \(Q^2 \) and Bjorken-x are also related via the collision energy and inelasticity
Proton Partonic Kinematics

\[X_P = x_B \left(1 + \frac{M^2}{Q^2} \right) \]

\[Q^2 = s y x_B \]

\[X_P = x_B + \frac{M^2}{s y} \]

- To measure \(\Delta G \), need to probe the parton coming from the proton
- Momentum fraction of the parton from proton is well reconstructed
- \(X_P \) is related to Bjorken-x and \(Q^2 \) at leading order
- \(Q^2 \) and Bjorken-x are also related via the collision energy and inelasticity
- Accessible \(X_P \) range basically determined by beam energies
Proton Partonic Kinematics

\[X_P = x_B \left(1 + \frac{M^2}{Q^2}\right) \]

\[Q^2 = syx_B \]

\[X_P = x_B + \frac{M^2}{sy} \]

- To measure \(\Delta G \), need to probe the parton coming from the proton
- Momentum fraction of the parton from proton is well reconstructed
- \(X_P \) is related to Bjorken-\(x \) and \(Q^2 \) at leading order
- \(Q^2 \) and Bjorken-\(x \) are also related via the collision energy and inelasticity
- Accessible \(X_P \) range basically determined by beam energies
- Lowest \(X_P \) we can probe is about 0.005

\[\approx \frac{100}{(20000 \times 0.95)} \approx 0.005 \]
X_p For Different Q^2

- At lower Q^2, contribution from resolved process increases while QCD Compton contribution decreases.

- For a given di-jet mass range (10 – 20 GeV in this case), same X_p can be reconstructed event-by-event and probed over large range of Q^2.

- This will allow for robust tests of the evolution of ΔG.
Complementary Coverage

Experimentally possible to extend these measurements to $Q^2 < 1$

Q^2 and x range covered by di-jet asymmetry measurements
Weighting PYTHIA

\[w = \hat{a}(s, t, \mu^2, Q^2) \cdot \frac{\Delta f_a^{\gamma^*}(x_a, \mu^2)}{f_a^{\gamma^*}(x_a, \mu^2)} \cdot \frac{\Delta f_b^N(x_b, \mu^2)}{f_b^N(x_b, \mu^2)} \]

- PYTHIA does not include parton polarization effects, but an asymmetry can be formed by assigning each event a weight depending on the hard-scattering asymmetry and (un)polarized photon and proton PDFs.

- Expected asymmetry is then the average over weights.

- Weights are sharply spiked near zero -> expect small asymmetries.
Weighting PYTHIA

\[w = a(s, t, \mu^2, Q^2) \cdot \frac{\Delta f_a^{\gamma^*}(x_a, \mu^2)}{f_a^{\gamma^*}(x_a, \mu^2)} \cdot \frac{\Delta f_b^N(x_b, \mu^2)}{f_b^N(x_b, \mu^2)} \]

- Process-dependent hard scattering asymmetry is a function of Mandelstam variables (\(\cos(\theta^*)\))

- The direct process distributions will be smeared by the additional depolarization term

- Note that the asymmetry for PGF is negative

Resolved

\[a(s, t, \mu^2) = \Delta \sigma / (2 \Delta \sigma) \]

Direct

\[\Delta \sigma \]

\(\hat{a}\)

\(\cos(\theta^*)\)

\(\cos(\theta^*)\)

Brian Page - DIS 2017
Weighting PYTHIA

\[w = \Delta f_{a}^{\gamma} (x_a, \mu^2) \cdot \frac{\Delta f_{b}^{N} (x_b, \mu^2)}{f_{a}^{\gamma} (x_a, \mu^2) \cdot f_{b}^{N} (x_b, \mu^2)} \]

- Second term is the ratio of the polarized to unpolarized photon PDFs.
- Use maximal scheme for polarized and GRV-G for unpolarized.
- For direct processes such as Photon-Gluon Fusion, this term is identically unity.
Weighting PYTHIA

\[w = a(s, t, \mu^2, Q^2) \left(\frac{\Delta f_a^{\gamma^*}(x_a, \mu^2)}{f_a^{\gamma^*}(x_a, \mu^2)} \right) \frac{\Delta f_b^{N}(x_b, \mu^2)}{f_b^{N}(x_b, \mu^2)} \]
\[A_{LL} \text{ Vs Di-jet Mass} \]

- Plot the expected \(A_{LL} \) as a function of di-jet invariant mass for each sub-process separately as well as the combined sample

- PGF asymmetry is nearly canceled out by QCDC asymmetry with opposite sign – would like to reduce QCDC contribution

- Need high integrated luminosity and high energy to probe the high-mass region where asymmetries can be sizable

- Control of systematics will be essential

\[Q^2 = 10 - 100 \text{ GeV}^2 \]

\[\sigma = \sqrt{\frac{1}{N} - \frac{A^2}{N}} \]
Asymmetry is plotted as a function of the momentum fraction of the parton from the proton.

Asymmetry shown for di-jet invariant masses between 10 and 20 GeV/c².

Error bars are statistical and scaled to the given integrated luminosity.

Different mass ranges will emphasize different momentum fraction ranges and subprocess mixes.

\[
Q^2 = 10 - 100 \text{ GeV}^2
\]

\[
\sigma = \sqrt{\frac{1}{N} - \frac{A^2}{N}}
\]
Summary

• Jets at an EIC will contain relatively few total particles and those particles will have low transverse momenta, making tracking essential for reducing jet energy scale uncertainties

• Di-jet measurements can be used to tag photon-gluon fusion events to access ΔG and investigate its evolution

• Combination of QCD-Compton and PGF subprocess asymmetries lead to small overall asymmetries

• Need large integrated luminosity and center-of-mass energy to explore asymmetries at high di-jet mass and good control on systematic effects
Backup
Jet Basics: Frames

• Can define several useful frames:

 • **Lab**: Detector-based frame

 • **Hadron-Boson**: Beam hadron is at rest, z-direction chosen along virtual photon momentum vector

 • **Breit**: Virtual photon moves in -z direction and boost such that it has zero energy. Separation into target and remnant regions

 • **Center of Mass**: Virtual photon and struck parton have equal and opposite momenta. Can define Feynman-x
Jet Basics: Radius

- For anti-k_T algorithm the radius parameter determines the distance at which particles can be grouped together
- Sets the effective size of the jet

- Parameters: Min $p_T = 1.0$ GeV, Resolved processes
- Larger radii result in more found jets as well as more particles in jet
Jet Multiplicity: $Q^2 = 0.01 - 0.1$ GeV\(^2\)

Jets: Resolved Processes

- **# Jets: PGF**

Jets: QCDC

- Percentage of events with a certain number of found jets for different minimum allowed jet p_T.
- See a decrease in number of jets with increasing minimum jet p_T.
- Jet p_T of 1 GeV may not be well described theoretically.
- Each curve normalized to unity.
Jet Multiplicity: $Q^2 = 10 - 100 \text{ GeV}^2$

- **# Jets: Resolved Processes**

- **# Jets: QCDC**

- **# Jets: PGF**

- Percentage of events with a certain number of found jets for different minimum allowed jet p_Ts
- See a decrease in number of jets with increasing minimum jet p_T
- Jet p_T of 1 GeV may not be well described theoretically
- Each curve normalized to unity
Jet Particle Multiplicity

- Look at the average number of particles in jet as a function of jet p_T
- All stable particles (charged and neutral) are counted

Q$^2 = 10 - 100$ GeV2

- No dependence on Q2 or subprocess
- How few particles can be in jet before it doesn’t make sense to call the object a jet?

Q$^2 = 0.01 - 0.1$ GeV2
Di-jet Yields

Photon-Gluon Fusion: $Q^2 = 1-10 \text{ GeV}^2$

- \(\bar{s} = 141 \text{ GeV} \)
- \(\bar{s} = 63 \text{ GeV} \)

Photon-Gluon Fusion: $Q^2 = 10-100 \text{ GeV}^2$

- \(\bar{s} = 90 \text{ GeV} \)
- \(\bar{s} = 40 \text{ GeV} \)
X_γ Reproduction: $Q^2 = 10 - 100$ GeV2

- How does the reproduction of X_γ depend on jet p_T?
- As expected unmatched events do not reproduce X_γ well
- See that high p_T range is more peaked toward 1 even for matched events
Accessing ΔG at RHIC: A_{LL}

$$A_{LL} = \frac{\sigma^{++} - \sigma^{-+}}{\sigma^{++} + \sigma^{-+}} = \frac{\sum \Delta f_a \otimes \Delta f_b \otimes d\hat{\sigma} \delta_{f_a f_b \rightarrow f_c X} \cdot \hat{a}_{LL} \rightarrow f_c X \otimes D^h_{f_c}}{\sum f_a \otimes f_b \otimes d\hat{\sigma} \delta_{f_a f_b \rightarrow f_c X} \otimes D^h_{f_c}}$$

Partonic fractions in jet production at 200 GeV

For most RHIC kinematics, gg and qg dominate, making A_{LL} for jets and hadrons sensitive to gluon polarization.
Accessing ΔG at RHIC: A_{LL}

- In polarized pp collisions, access ΔG via the longitudinal double helicity asymmetry A_{LL} which is sensitive to the polarized gluon distribution at leading order.

- STAR and PHENIX measure A_{LL} using inclusive jet and π^0 final states, respectively.
New DSSV Results

Integral of $\Delta g(x)$ in range $0.05 < x < 1.0$ increases from roughly 0.05 to $0.20^{+0.06}_{-0.07}$. First indication of non-zero gluon polarization!
Integral of $\Delta g(x)$ in range $0.05 < x < 1.0$ increases from roughly 0.05 to $0.20^{+0.06}_{-0.07}$. First indication of non-zero gluon polarization!

Uncertainty shrinks substantially from DSSV* to new DSSV fit.
New DSSV Results

- Integral of $\Delta g(x)$ in range $0.05 < x < 1.0$ increases from roughly 0.05 to $0.20^{+0.06}_{-0.07}$. First indication of non-zero gluon polarization!

- Uncertainty shrinks substantially from DSSV* to new DSSV fit

- Uncertainty on integral over low x region is still sizable (only $\sqrt{s} = 200$ GeV RHIC data)
Di-jet $A_{LL} (pp)$

- Coincidence measurements capture more information about hard scatter and better constrain initial kinematics.
Di-jet A_{LL}(pp)

- Coincidence measurements capture more information about hard scatter and better constrain initial kinematics.

- Di-jet A_{LL} plotted vs M_{inv}/\sqrt{s} ($\sim \sqrt{x_1 x_2}$ at L.O.) for data taken at $\sqrt{s} = 200$ and 510 GeV.

- 510 GeV data extend to lower M_{inv}/\sqrt{s} (lower x) where ΔG not as well constrained while 200 GeV data give better precision at mid to high M_{inv}/\sqrt{s}.

Brian Page - DIS 2017
EIC: eRHIC or JLEIC
EIC: Impact on Quark Polarizations

$$\Delta \Sigma = \int (\Delta u + \Delta d + \Delta s + \Delta \bar{u} + \Delta \bar{d} + \Delta \bar{s} + \cdots) dx$$

- g_1 is sensitive to the sum of all quark and anti-quark polarized PDFs meaning an EIC will place strong constraints on $\Delta \Sigma$

- An EIC will also be able to constrain the individual quark and anti-quark polarized PDFs via semi-inclusive DIS (SIDIS) measurements

- The polarized anti-quark distributions are of particular interest as they provide information on non-perturbative aspects of proton structure
EIC: Impact on Quark Polarizations

\[\Delta \Sigma = \int \left(\Delta u + \Delta d + \Delta s + \Delta \bar{u} + \Delta \bar{d} + \Delta \bar{s} + \cdots \right) dx \]

- The above plots show the expected reduction in uncertainty for the polarized anti-quark distributions from EIC SIDIS data.
- Individual quark and anti-quark distributions can also be measured at an EIC via charged current DIS which access different combinations of PDFs.
EIC: Solving the Spin Puzzle

Gluon

- Above plot shows the running integral of $\Delta g(x,Q^2)$ from x_{min} to 1 as a function of x_{min}

- Large reduction in uncertainty on ΔG from EIC can be seen

arXiv:1409.1633
EIC: Solving the Spin Puzzle

Gluon

- Above plot shows the running integral of $\Delta g(x,Q^2)$ from x_{min} to 1 as a function of x_{min}
- Large reduction in uncertainty on ΔG from EIC can be seen

Quarks

- EIC will also reduce the uncertainty on the quark contribution to the proton spin
- No assumptions about hyperon beta decay in EIC uncertainty

Brian Page - DIS 2017
EIC: Solving the Spin Puzzle

\[\frac{1}{2} - \text{Gluon} - \text{Quarks} = \text{orbital angular momentum} \]

- Above plot shows the running integral of \(\Delta g(x,Q^2) \) from \(x_{\text{min}} \) to 1 as a function of \(x_{\text{min}} \)
- Large reduction in uncertainty on \(\Delta G \) from EIC can be seen
- EIC will also reduce the uncertainty on the quark contribution to the proton spin
- No assumptions about hyperon beta decay in EIC uncertainty

Constraints on gluon and quark contributions will provide information on the orbital angular momentum component of proton spin

\[Q^2 = 10 \text{ GeV}^2 \]

\[\int_{x_{\text{min}}}^{1} dx \Delta g(x,Q^2) \]

\[\int_{x_{\text{min}}}^{1} dx \text{DSSV 2014 with 90\% C.L. band} \]

\[\text{eRHIC data:} \]
\[15 \times 100 \text{ GeV} \]
\[+15 \times 250 \text{ GeV} \]
\[+20 \times 250 \text{ GeV} \]

all bands 90\% C.L.

\[\frac{1}{2} - \int_{x_{\text{min}}}^{1} dx [\frac{1}{2} Dg + Dg] \]

\[Q^2 = 10 \text{ GeV}^2 \]

\[10^{-1} \]

arXiv:1409.1633
X_γ: Reconstructed Vs True

- Will use virtual photon momentum fraction to discriminate between resolved and direct processes.
- See good agreement between reconstructed and true X_γ for all Q^2 ranges.
- Di-jets found in Breit frame and required one jet with $p_T \geq 5$ GeV and the other with $p_T \geq 4$ GeV.

$$X_\gamma = \frac{1}{2E_{e\gamma}} \left(m_{T1}e^{-\gamma_1} + m_{T2}e^{-\gamma_2} \right)$$
Asymmetry