Advancing the precision of proton-proton and proton-nucleus collision studies with A Fixed-Target ExpeRiment at the LHC (AFTER@LHC)

Jean-Philippe Lansberg
IPN Orsay, CNRS/IN2P3, Univ. Paris-Sud, Université Paris-Saclay

3-7 April 2017, University of Birmingham

On behalf of the AFTER@LHC Study group: http://after.in2p3.fr/after/index.php/Current_author_list
Part I

Assets, Kinematics, Possible Implementations and Luminosities
The fixed-target mode with TeV beams: why and what for?

achieving high luminosities, varying the atomic mass of the target at a target, polarising the target.

physics cases:

- High-xx gluon, antiquark and heavy-quark content in the nucleon & nucleus
- Transverse dynamics and spin of gluons inside (un)polarised nucleons
- Heavy-ion physics between SPS & RHIC energies towards larger rapidities

All this can be realised at CERN in a parasitic mode with the most energetic beams ever!

Nota: all (past) colliders with \(E_p\) have had a fixed-target program (Tevatron, HERA, SPS, RHIC)
The fixed-target mode with TeV beams: why and what for?

4 decisive features
The fixed-target mode with TeV beams: why and what for?

4 decisive features

- accessing the high x frontier
- achieving high luminosities,
- varying the atomic mass of the target almost at will,
- polarising the target.

\[|x_F| \equiv \frac{|p_z|}{p_{z \text{ max}}} \rightarrow 1 \]
The fixed-target mode with TeV beams: why and what for?

4 decisive features

- accessing the high x frontier
- achieving high luminosities,
- varying the atomic mass of the target almost at will,
- polarising the target.

3 physics cases

$$|x_F| \equiv \frac{|p_z|}{p_{z\text{ max}}} \rightarrow 1$$
The fixed-target mode with TeV beams: why and what for?

4 decisive features

- accessing the high x frontier
- achieving high luminosities,
- varying the atomic mass of the target almost at will,
- polarising the target.

3 physics cases

- High-x gluon, antiquark and heavy-quark content in the nucleon & nucleus
The fixed-target mode with TeV beams: why and what for?

4 decisive features

- accessing the high x frontier
- achieving high luminosities,
- varying the atomic mass of the target almost at will,
- polarising the target.

3 physics cases

- High-x gluon, antiquark and heavy-quark content in the nucleon & nucleus
- Transverse dynamics and spin of gluons inside (un)polarised nucleons

$|x_F| \equiv \frac{|p_z|}{p_{z\text{max}}} \to 1$
The fixed-target mode with TeV beams: why and what for?

4 decisive features
- accessing the high x frontier
- achieving high luminosities,
- varying the atomic mass of the target almost at will,
- polarising the target.

3 physics cases
- High-x gluon, antiquark and heavy-quark content in the nucleon & nucleus
- Transverse dynamics and spin of gluons inside (un)polarised nucleons
- Heavy-ion physics between SPS & RHIC energies towards large rapidities
The fixed-target mode with TeV beams: why and what for?

4 decisive features
- accessing the high x frontier
- achieving high luminosities,
- varying the atomic mass of the target almost at will,
- polarising the target.

3 physics cases
- High-x gluon, antiquark and heavy-quark content in the nucleon & nucleus
- Transverse dynamics and spin of gluons inside (un)polarised nucleons
- Heavy-ion physics between SPS & RHIC energies towards large rapidities

All this can be realised at CERN in a parasitic mode with the most energetic beams ever!

Nota: all (past) colliders with $E_p \geq 100$ GeV have had a fixed-target program (Tevatron, HERA, SPS, RHIC)
Fixed-target collisions at the LHC: main kinematical features
Energy range

7 TeV proton beam on a fixed target

<table>
<thead>
<tr>
<th>c.m.s. energy: $\sqrt{s} = \sqrt{2m_N E_p} \approx 115$ GeV</th>
<th>Rapidity shift: $y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.8$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boost: $\gamma = \sqrt{s} / (2m_N) \approx 60$</td>
<td></td>
</tr>
</tbody>
</table>

2.76 TeV Pb beam on a fixed target

<table>
<thead>
<tr>
<th>c.m.s. energy: $\sqrt{s_{NN}} = \sqrt{2m_N E_{Pb}} \approx 72$ GeV</th>
<th>Rapidity shift: $y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boost: $\gamma \approx 40$</td>
<td></td>
</tr>
</tbody>
</table>
Fixed-target collisions at the LHC: main kinematical features

Energy range
7 TeV proton beam on a fixed target

<table>
<thead>
<tr>
<th>c.m.s. energy: $\sqrt{s} = \sqrt{2m_N E_p} \approx 115$ GeV</th>
<th>Rapidity shift: $\gamma = \sqrt{s} / (2m_N) \approx 60$</th>
</tr>
</thead>
</table>

2.76 TeV Pb beam on a fixed target

<table>
<thead>
<tr>
<th>c.m.s. energy: $\sqrt{s_{NN}} = \sqrt{2m_N E_{Pb}} \approx 72$ GeV</th>
<th>Rapidity shift: $\gamma \approx 40$</th>
</tr>
</thead>
</table>

Such \sqrt{s} allow, for the first time, for systematic studies of W boson, bottomonia, p_T spectra, associated production, ..., in the fixed target mode.
Fixed-target collisions at the LHC: main kinematical features

Energy range

<table>
<thead>
<tr>
<th>7 TeV proton beam on a fixed target</th>
<th>2.76 TeV Pb beam on a fixed target</th>
</tr>
</thead>
<tbody>
<tr>
<td>c.m.s. energy: $\sqrt{s} = \sqrt{2m_N E_p} \approx 115$ GeV</td>
<td>c.m.s. energy: $\sqrt{s_{NN}} = \sqrt{2m_N E_{Pb}} \approx 72$ GeV</td>
</tr>
<tr>
<td>Boost: $\gamma = \sqrt{s} / (2m_N) \approx 60$</td>
<td>Boost: $\gamma \approx 40$</td>
</tr>
<tr>
<td>Rapidity shift: $y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.8$</td>
<td>Rapidity shift: $y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.3$</td>
</tr>
</tbody>
</table>

Such \sqrt{s} allow, for the first time, for systematic studies of W boson, bottomonia, p_T spectra, associated production, …, in the fixed target mode.

Effect of boost:

- LHCb and the ALICE muon arm become **backward detectors** $[y_{c.m.s.} < 0]$ [particularly relevant for high energy beams]
Fixed-target collisions at the LHC: main kinematical features

Energy range

7 TeV proton beam on a fixed target

<table>
<thead>
<tr>
<th>c.m.s. energy:</th>
<th>$\sqrt{s} = \sqrt{2m_N E_p} \approx 115$ GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boost:</td>
<td>$\gamma = \sqrt{s} / (2m_N) \approx 60$</td>
</tr>
</tbody>
</table>

Rapidity shift:

$y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.8$

2.76 TeV Pb beam on a fixed target

<table>
<thead>
<tr>
<th>c.m.s. energy:</th>
<th>$\sqrt{s_{NN}} = \sqrt{2m_N E_{Pb}} \approx 72$ GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boost:</td>
<td>$\gamma \approx 40$</td>
</tr>
</tbody>
</table>

Rapidity shift:

$y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.3$

Such \sqrt{s} allow, for the first time, for systematic studies of W boson, bottomonia, p_T spectra, associated production, …, in the fixed target mode.

Effect of boost:

- LHCb and the ALICE muon arm become backward detectors $[y_{c.m.s.} < 0]$
- With the reduced \sqrt{s}, their acceptance for physics grows and nearly covers half of the backward region for most probes $[-1 < x_F < 0]$
Fixed-target collisions at the LHC: main kinematical features

Energy range

7 TeV proton beam on a fixed target

<table>
<thead>
<tr>
<th>c.m.s. energy: $\sqrt{s} = \sqrt{2m_N E_p} \approx 115$ GeV</th>
<th>Rapidity shift: $y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.8$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boost: $\gamma = \sqrt{s} / (2m_N) \approx 60$</td>
<td></td>
</tr>
</tbody>
</table>

2.76 TeV Pb beam on a fixed target

<table>
<thead>
<tr>
<th>c.m.s. energy: $\sqrt{s_{NN}} = \sqrt{2m_N E_{Pb}} \approx 72$ GeV</th>
<th>Rapidity shift: $y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boost: $\gamma \approx 40$</td>
<td></td>
</tr>
</tbody>
</table>

Such \sqrt{s} allow, for the first time, for systematic studies of W boson, bottomonia, p_T spectra, associated production, ..., in the fixed target mode

Effect of boost:

- LHCb and the ALICE muon arm become **backward detectors** $[y_{c.m.s.} < 0]$.
- With the reduced \sqrt{s}, their acceptance for physics grows and nearly covers half of the backward region for most probes $[-1 < x_F < 0]$.
- Allows for backward physics up to high x_{target} (≡ x_2) $[\text{uncharted for proton-nucleus; most relevant for } p-p^\uparrow \text{ with large } x^\uparrow]$.
LHCb acceptance for various colliding modes

(1) Fixed-target using p beam, $E_p = 7$ TeV

(2) Fixed-target using Pb beam, $E_{Pb} = 2.76$ A.TeV

(3) Collider using p beams, $E_p = 7$ TeV
ALICE muon acceptance for various colliding modes

(1) Fixed-target using p beam, \(E_p = 7 \) TeV
(2) Fixed-target using Pb beam, \(E_{Pb} = 2.76 \) A.TeV
(3) Collider using p beams, \(E_p = 7 \) TeV
Possible implementations

Nota: In most of the cases, the luminosity is limited by the detector or by the *parasiticity*.
Possible implementations

- **Internal gas target** (see next slide)
 - can be installed in one of the existing LHC caverns, and coupled to existing experiments
 - currently validated by the LHCb collaboration via a luminosity monitor (SMOG)
 - bears on the high LHC particle current
 - proton flux: $3.4 \times 10^{18} \text{ s}^{-1}$ & lead flux: $3.6 \times 10^{14} \text{ s}^{-1}$

Nota: In most of the cases, the luminosity is limited by the detector or by the parasiticity
Possible implementations

- **Internal gas target** (see next slide)
 - can be installed in one of the existing LHC caverns, and coupled to existing experiments
 - currently validated by the LHCb collaboration via a luminosity monitor (SMOG)
 - bears on the high LHC particle current
 - proton flux: $3.4 \times 10^{18} \text{ s}^{-1}$ & lead flux: $3.6 \times 10^{14} \text{ s}^{-1}$

- **Internal wire target**
 [used by Hera-B on the 920 GeV HERA p beam and by STAR at RHIC]

Nota: In most of the cases, the luminosity is limited by the detector or by the *parasiticity*
Possible implementations

- **Internal gas target** (see next slide)
 - can be installed in one of the existing LHC caverns, and coupled to existing experiments
 - currently validated by the LHCb collaboration via a luminosity monitor (SMOG)
 - bears on the high LHC particle current
 - proton flux: $3.4 \times 10^{18} \text{ s}^{-1}$ & lead flux: $3.6 \times 10^{14} \text{ s}^{-1}$

- **Internal wire target** [used by Hera-B on the 920 GeV HERA p beam and by STAR at RHIC]

- **Beam line extracted by a bent crystal**
 - the most ambitious solution [civil engineering required]
 - provides a new facility with 7 TeV proton beam
 - the LHC beam halo is recycled
 - proton flux: $5 \times 10^8 \text{ s}^{-1}$ & lead flux: $2 \times 10^5 \text{ s}^{-1}$

Nota: In most of the cases, the luminosity is limited by the detector or by the *parasiticity*
Possible implementations

- **Internal gas target** (see next slide)
 - can be installed in one of the existing LHC caverns, and coupled to existing experiments
 - currently validated by the LHCb collaboration via a luminosity monitor (SMOG)
 - bears on the high LHC particle current
 - proton flux: $3.4 \times 10^{18} \text{ s}^{-1}$ & lead flux: $3.6 \times 10^{14} \text{ s}^{-1}$

- **Internal wire target**
 - [used by Hera-B on the 920 GeV HERA p beam and by STAR at RHIC]

- **Beam line extracted by a bent crystal**
 - the most ambitious solution
 - provides a new facility with 7 TeV proton beam
 - the LHC beam halo is recycled
 - proton flux: $5 \times 10^8 \text{ s}^{-1}$ & lead flux: $2 \times 10^5 \text{ s}^{-1}$
 - [civil engineering required]

- **Beam split by a bent crystal**
 - intermediate option which reduces the civil engineering
 - might be coupled to an existing experiment
 - similar fluxes

Nota: In most of the cases, the luminosity is limited by the detector or by the *parasiticity*
Possible implementations

- **Internal gas target** (see next slide)
 - can be installed in one of the existing LHC caverns, and coupled to existing experiments
 - currently validated by the LHCb collaboration via a luminosity monitor (SMOG)
 - bears on the high LHC particle current
 - proton flux: $3.4 \times 10^{18} \text{ s}^{-1}$ & lead flux: $3.6 \times 10^{14} \text{ s}^{-1}$

- **Internal wire target** [used by Hera-B on the 920 GeV HERA p beam and by STAR at RHIC]

- **Beam line extracted by a bent crystal** [civil engineering required]
 - the most ambitious solution
 - provides a new facility with 7 TeV proton beam
 - the LHC beam halo is recycled
 - proton flux: $5 \times 10^8 \text{ s}^{-1}$ & lead flux: $2 \times 10^5 \text{ s}^{-1}$

- **Beam split by a bent crystal**
 - intermediate option which reduces the civil engineering
 - might be coupled to an existing experiment
 - similar fluxes

- Similar luminosities with an internal gas target or a crystal-based solution

<table>
<thead>
<tr>
<th></th>
<th>pp</th>
<th>pA</th>
<th>PbA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lumi.</td>
<td>$\mathcal{O}(10 \text{ fb}^{-1}\text{yr}^{-1})$</td>
<td>$\mathcal{O}(0.1 - 1 \text{ fb}^{-1}\text{yr}^{-1})$</td>
<td>$\mathcal{O}(1 - 50 \text{ nb}^{-1}\text{yr}^{-1})$</td>
</tr>
</tbody>
</table>

Nota: In most of the cases, the luminosity is limited by the detector or by the *parasiticity*
Internal gas targets

SMOG(-like) system

HERMES(-like) system
Internal gas targets

SMOG(-like) system
- SMOG: System for Measuring Overlap with Gas
- Designed for precise luminosity determination
- Noble gas directly injected in the VELO

HERMES(-like) system
Internal gas targets

SMOG(-like) system
- SMOG: System for Measuring Overlap with Gas
- Designed for precise luminosity determination
- Noble gas directly injected in the VELO

HERMES(-like) system
- Injection of gas in an open-end storage cell
- Used e.g. at DESY for 10 years
Internal gas targets

SMOG(-like) system

- SMOG: System for Measuring Overlap with Gas
- Designed for precise luminosity determination
- Noble gas directly injected in the VELO
 ✓ p(He,Ne,Ar), Pb(Ne,Ar) tested: completely parasitic [up to one week, so far]
 ✓ New pressure monitoring to be installed
 ✓ Could be coupled to ALICE: ideal demonstrator

HERMES(-like) system

- Injection of gas in an open-end storage cell
- Used e.g. at DESY for 10 years

J.P. Lansberg (IPNO, Paris-Sud U.)
Internal gas targets

SMOG(-like) system
- SMOG: System for Measuring Overlap with Gas
- Designed for precise luminosity determination
- Noble gas directly injected in the VELO
- p(He,Ne,Ar), Pb(Ne,Ar) tested: completely parasitic [up to one week, so far]
- New pressure monitoring to be installed
- Could be coupled to ALICE: ideal demonstrator

HERMES(-like) system
- Injection of gas in an open-end storage cell
- Used e.g. at DESY for 10 years
- ✔ Dedicated pumping system [turbo-molecular pumps]
- ✔ Pressure in the cell significantly higher [diameter ≤ 2cm in the closed position]
- ✔ Polarised H and D can be injected ballistically with high polarisation
- ✔ Polarised 3He or unpolarised heavy gas (Kr, Xe) can also be injected
Internal gas targets

SMOG(-like) system
- SMOG: System for Measuring Overlap with Gas
- Designed for precise luminosity determination
- Noble gas directly injected in the VELO
- p(He, Ne, Ar), Pb(Ne, Ar) tested: completely parasitic
- New pressure monitoring to be installed
- Could be coupled to ALICE: ideal demonstrator
- No specific pumping system: limits the injected gas
- Gas flows in the beampipe; pressure profile not optimised
- Kr and Xe maybe only at end of a run

HERMES(-like) system
- Injection of gas in an open-end storage cell
- Used e.g. at DESY for 10 years
- Dedicated pumping system [turbo-molecular pumps]
- Pressure in the cell significantly higher [diameter ≤ 2cm in the closed position]
- Polarised H and D can be injected ballistically with high polarisation
- Polarised 3He or unpolarised heavy gas (Kr, Xe) can also be injected
Internal gas targets

SMOG(-like) system
- SMOG: System for Measuring Overlap with Gas
- Designed for precise luminosity determination
- **Noble gas directly injected** in the VELO
- \(p(\text{He,Ne,Ar}), \text{Pb(Ne,Ar)} \) tested: completely parasitic
- New pressure monitoring to be installed
- Could be coupled to ALICE: ideal demonstrator
- No specific pumping system: limits the injected gas
 - [pressure and duration]
- No possibility to use polarised gases
- Gas flows in the beampipe; pressure profile not optimised
- **Kr and Xe** maybe only at end of a run

HERMES(-like) system
- Injection of gas in an open-end storage cell
- Used e.g. at DESY for 10 years
- **Dedicated pumping system** [turbo-molecular pumps]
- **Pressure** in the cell significantly higher
 - [diameter ≤ 2cm in the closed position]
- **Polarised H and D** can be injected ballistically with high polarisation
- **Polarised \(^3\)He** or unpolarised heavy gas (Kr, Xe) can also be injected
- Not compatible with an injection inside ALICE; only upstream
- May need complementary vertexing capabilities

J.P. Lansberg (IPNO, Paris-Sud U.)

AFTER@LHC

April 4, 2017
Internal gas targets

SMOG(-like) system

- SMOG: System for Measuring Overlap with Gas
- Designed for precise luminosity determination
- Noble gas directly injected in the VELO

✓ p(He,Ne,Ar), Pb(Ne,Ar) tested: completely parasitic
 [up to one week, so far]
✓ New pressure monitoring to be installed
✓ Could be coupled to ALICE: ideal demonstrator
✗ No specific pumping system: limits the injected gas
 [pressure and duration]
✗ No possibility to use polarised gases
✗ Gas flows in the beampipe; pressure profile not optimised
✗ Kr and Xe maybe only at end of a run

HERMES(-like) system

- Injection of gas in an open-end storage cell
- Used e.g. at DESY for 10 years
✓ Dedicated pumping system [turbo-molecular pumps]
✓ Pressure in the cell significantly higher
 [diameter ≤ 2cm in the closed position]
✓ Polarised H and D can be injected ballistically with high polarisation
✓ Polarised 3He or unpolarised heavy gas (Kr, Xe) can also be injected
✗ Not compatible with an injection inside ALICE; only upstream
✗ May need complementary vertexing capabilities
Internal gas targets

SMOG(-like) system
- SMOG: System for Measuring Overlap with Gas
- Designed for precise luminosity determination
- Noble gas directly injected in the VELO
- \(p(\text{He,Ne,Ar}), \text{Pb(Ne,Ar)} \) tested: completely parasitic [up to one week, so far]
- New pressure monitoring to be installed
- Could be coupled to ALICE: ideal demonstrator
- No specific pumping system: limits the injected gas [pressure and duration]
- No possibility to use polarised gases
- Gas flows in the beampipe; pressure profile not optimised
- \(\text{Kr and Xe maybe only at end of a run} \)

HERMES(-like) system
- Injection of gas in an open-end storage cell
- Used e.g. at DESY for 10 years
- ✅ Dedicated pumping system [turbo-molecular pumps]
- ✅ Pressure in the cell significantly higher [diameter \(\leq 2 \text{cm} \) in the closed position]
- ✅ Polarised H and D can be injected ballistically with high polarisation
- ✅ Polarised \(^3\text{He} \) or unpolarised heavy gas (Kr, Xe) can also be injected
- ✗ Not compatible with an injection inside ALICE; only upstream
- ✗ May need complementary vertexing capabilities

The simulations showed in Part II are based on this set-up coupled to a LHCb like detector.
Beam splitting option

Proposed at the Physics Beyond Collider workshop Sept.2016 (S.Redaelli, W.Scandale)

- Crystal located ~ 100 m downstream the target to deflect the beam halo
- Solid target close to the nominal interaction point
- Absorber 100 m upstream for the non-interacting beam halo
Part II

A selection of projected performances

What is not covered by lack of time

- Heavy-ion physics case
- Azimuthal asymmetries
- Photon related observables
- W boson
- Antiproton and related x-section measurements for astroparticle MC tuning
- C-even quarkonia
- Associated production (beyond double J/ψ)
Unique acceptance (with a LHCb-like detector) compared to existing DY pA data used for nuclear PDF/fit (E/eight.fitted/six.fitted&E/seven.fitted/seven.fitted/two.fitted@Fermilab).

Same acceptance for pp collisions

Extremely large yields up to $x/one.fitted[plot made for pX with a Hermes-like target]

No existing measurements at RHIC (per 0.10)

$M (GeV)$ (per 0.50)

$\mu T < 5$, $p_{lab} = 115$ GeV, $2 < Y_s$ Drell-Yan, pXe@FNAL-E866

FNAL-E772

AFTER@LHC sim

J.P. Lansberg (IPNO, Paris-Sud U.)
Drell-Yan

- Unique acceptance (with a LHCb-like detector) compared to existing DY \(pA \) data used for nuclear PDF fit (E866 & E772 @ Fermilab).

![Drell-Yan, pXe@ \(\sqrt{s} = 115 \) GeV, \(2 < Y_{\mu\mu}^{\text{lab}} < 5 \), \(p_T^{\mu} > 1.2 \) GeV/c, \(L = 100 \) pb\(^{-1}\)](image-url)
Drell-Yan

- Unique acceptance (with a LHCb-like detector) compared to existing DY \(pA \) data used for nuclear PDF fit (E866 & E772 @ Fermilab).
- Same acceptance for \(pp \) collisions
- Unique acceptance (with a LHCb-like detector) compared to existing DY pA data used for nuclear PDF fit (E866 & E772 @ Fermilab).
- Same acceptance for pp collisions
- Extremely large yields up to $x_2 \to 1$ [plot made for pXe with a Hermes like target]
Unique acceptance (with a LHCb-like detector) compared to existing DY pA data used for nuclear PDF fit (E866 & E772 @ Fermilab).

Same acceptance for pp collisions

Extremely large yields up to $x_2 \to 1$ [plot made for pXe with a Hermes like target]

No existing measurements at RHIC
Drell-Yan performances for spin analyses [LHCb-like detector]

DY pair production on a transversely polarised target is the aim of several experiments (COMPASS, E/one.fitted/zero.fitted/three.fitted/nine.fitted, STAR, E/one.fitted/zero.fitted/two.fitted/seven.fitted).

Check the sign change in A_{DY} vs A_{SIDIS}: hot topic in spin physics!

With a highly polarised gas target, from an exploration phase to a consolidation phase.

With a 3He target, access to the quark Sivers effect in the neutron via DY: unique!

\begin{align*}
\text{SIDIS 1 (Sivers effect)} & < 3 \\
\mu \mu & < y < 4 \\
\mu \mu & < y < 5 \\
\mu \mu & < y^2 < 9 \text{ GeV/c} \\
\mu \mu & < M^2 \text{ d}M = 1 \text{ GeV/c} = 115 \text{ GeV/s} \\
p+p & -1 \\
\text{L} & = 0.8 \\
P_{\text{eff. pol.}} & = 10 \text{ fb} \\
p+p & L = 0.8 \\
P_{\text{eff. pol.}} & = 0.25 \text{ fb} \\
\text{L} & = 0.7/3 \\
P_{\text{eff. pol.}} & = 115 \text{ GeV} \\
\end{align*}
DY pair production on a transversely polarised target is the aim of several experiment (COMPASS, E1039, STAR, E1027)
Drell-Yan performances for spin analyses

- DY pair production on a transversely polarised target is the aim of several experiments (COMPASS, E1039, STAR, E1027)
- Check the sign change in A_N DY vs SIDIS: hot topic in spin physics!

<table>
<thead>
<tr>
<th>Experiment</th>
<th>particles</th>
<th>beam energy (GeV)</th>
<th>\sqrt{s} (GeV)</th>
<th>x^F</th>
<th>\mathcal{L} (cm$^{-2}$s$^{-1}$)</th>
<th>\mathcal{P}_eff</th>
<th>\mathcal{F} (cm$^{-2}$s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFTER@LHCb $p + p^\uparrow$</td>
<td>7000</td>
<td>115</td>
<td>0.05 \pm 0.95</td>
<td>$1 \cdot 10^{13}$</td>
<td>80%</td>
<td>6.4 $\cdot 10^{32}$</td>
<td></td>
</tr>
<tr>
<td>AFTER@LHCb $p + ^3\text{He}^\uparrow$</td>
<td>7000</td>
<td>115</td>
<td>0.05 \pm 0.95</td>
<td>$2.5 \cdot 10^{32}$</td>
<td>23%</td>
<td>1.4 $\cdot 10^{33}$</td>
<td></td>
</tr>
<tr>
<td>AFTER@ALICE$_{pp}$ $p + p^\uparrow$</td>
<td>7000</td>
<td>115</td>
<td>0.1 \pm 0.3</td>
<td>$2.5 \cdot 10^{31}$</td>
<td>80%</td>
<td>1.6 $\cdot 10^{31}$</td>
<td></td>
</tr>
<tr>
<td>COMPASS (CERN) $\pi^- + p^\uparrow$</td>
<td>190</td>
<td>19</td>
<td>0.05 \pm 0.55</td>
<td>$2 \cdot 10^{13}$</td>
<td>18%</td>
<td>6.5 $\cdot 10^{31}$</td>
<td></td>
</tr>
<tr>
<td>PHENIX/STAR (RHIC) $p^\uparrow + p^\uparrow$</td>
<td>collider</td>
<td>510</td>
<td>0.05 \pm 0.1</td>
<td>$2 \cdot 10^{12}$</td>
<td>50%</td>
<td>5.0 $\cdot 10^{31}$</td>
<td></td>
</tr>
<tr>
<td>E1039 (FNAL) $p + p^\uparrow$</td>
<td>120</td>
<td>15</td>
<td>0.1 \pm 0.45</td>
<td>$4 \cdot 10^{13}$</td>
<td>15%</td>
<td>9.0 $\cdot 10^{33}$</td>
<td></td>
</tr>
<tr>
<td>E1027 (FNAL) $p^\uparrow + p$</td>
<td>120</td>
<td>15</td>
<td>0.35 \pm 0.9</td>
<td>$2 \cdot 10^{13}$</td>
<td>60%</td>
<td>7.2 $\cdot 10^{34}$</td>
<td></td>
</tr>
<tr>
<td>NICA (JINR) $p^\uparrow + p$</td>
<td>collider</td>
<td>26</td>
<td>0.1 \pm 0.8</td>
<td>$1 \cdot 10^{13}$</td>
<td>70%</td>
<td>4.9 $\cdot 10^{31}$</td>
<td></td>
</tr>
<tr>
<td>fsPHENIX (RHIC) $p^\uparrow + p^\uparrow$</td>
<td>collider</td>
<td>200</td>
<td>0.1 \pm 0.5</td>
<td>$8 \cdot 10^{11}$</td>
<td>60%</td>
<td>2.9 $\cdot 10^{31}$</td>
<td></td>
</tr>
<tr>
<td>fsPHENIX (RHIC) $p^\uparrow + p$</td>
<td>collider</td>
<td>510</td>
<td>0.05 \pm 0.6</td>
<td>$6 \cdot 10^{12}$</td>
<td>50%</td>
<td>1.5 $\cdot 10^{32}$</td>
<td></td>
</tr>
<tr>
<td>PANDA (GSI) $\bar{p} + p^\uparrow$</td>
<td>15</td>
<td>5.5</td>
<td>0.2 \pm 0.4</td>
<td>$2 \cdot 10^{12}$</td>
<td>20%</td>
<td>8.0 $\cdot 10^{30}$</td>
<td></td>
</tr>
</tbody>
</table>
Drell-Yan performances for spin analyses

- DY pair production on a transversely polarised target is the aim of several experiment (COMPASS, E1039, STAR, E1027)
- Check the sign change in A_N DY vs SIDIS: hot topic in spin physics!
- With a highly polarised gas target, from an exploration phase to a consolidation phase

<table>
<thead>
<tr>
<th>Experiment</th>
<th>particles</th>
<th>beam energy (GeV)</th>
<th>\sqrt{s} (GeV)</th>
<th>x^T</th>
<th>L (cm$^{-2}$s$^{-1}$)</th>
<th>$P_{\text{eff. pol.}}$</th>
<th>F (cm$^{-2}$s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFTER@LHCb</td>
<td>$p + p^+$</td>
<td>7000</td>
<td>115</td>
<td>0.05 \pm 0.95</td>
<td>1 \cdot 1013</td>
<td>80%</td>
<td>6.4 \cdot 1012</td>
</tr>
<tr>
<td>AFTER@LHCb</td>
<td>$p + p^+$</td>
<td>7000</td>
<td>115</td>
<td>0.05 \pm 0.95</td>
<td>2.5 \cdot 1012</td>
<td>23%</td>
<td>1.4 \cdot 1011</td>
</tr>
<tr>
<td>AFTER@ALICE$_p$</td>
<td>$p + p^+$</td>
<td>7000</td>
<td>115</td>
<td>0.1 \pm 0.3</td>
<td>2.5 \cdot 1011</td>
<td>80%</td>
<td>1.6 \cdot 1011</td>
</tr>
<tr>
<td>COMPASS (CERN)</td>
<td>$\pi^- + p^+$</td>
<td>190</td>
<td>19</td>
<td>0.05 \pm 0.55</td>
<td>2 \cdot 1013</td>
<td>18%</td>
<td>6.5 \cdot 1011</td>
</tr>
<tr>
<td>PHENIX/STAR (RHIC)</td>
<td>$p^+ + p^+$</td>
<td>collider</td>
<td>510</td>
<td>0.05 \pm 0.1</td>
<td>2 \cdot 1012</td>
<td>50%</td>
<td>5.0 \cdot 1011</td>
</tr>
<tr>
<td>E1039 (FNAL)</td>
<td>$p + p^+$</td>
<td>120</td>
<td>15</td>
<td>0.1 \pm 0.45</td>
<td>4 \cdot 1015</td>
<td>15%</td>
<td>9.0 \cdot 1013</td>
</tr>
<tr>
<td>E1027 (FNAL)</td>
<td>$p^+ + p$</td>
<td>120</td>
<td>15</td>
<td>0.35 \pm 0.9</td>
<td>2 \cdot 1015</td>
<td>60%</td>
<td>7.2 \cdot 1014</td>
</tr>
<tr>
<td>NICA (JINR)</td>
<td>$p^+ + p$</td>
<td>collider</td>
<td>26</td>
<td>0.1 \pm 0.8</td>
<td>1 \cdot 1012</td>
<td>70%</td>
<td>4.9 \cdot 1011</td>
</tr>
<tr>
<td>fsPHENIX (RHIC)</td>
<td>$p^+ + p$</td>
<td>collider</td>
<td>200</td>
<td>0.1 \pm 0.5</td>
<td>8 \cdot 1011</td>
<td>60%</td>
<td>2.9 \cdot 1011</td>
</tr>
<tr>
<td>fsPHENIX (RHIC)</td>
<td>$p^+ + p$</td>
<td>collider</td>
<td>350</td>
<td>0.05 \pm 0.6</td>
<td>6 \cdot 1012</td>
<td>50%</td>
<td>1.5 \cdot 1012</td>
</tr>
<tr>
<td>PANDA (GSI)</td>
<td>$\bar{p} + p$</td>
<td>15</td>
<td>5.5</td>
<td>0.2 \pm 0.4</td>
<td>2 \cdot 1012</td>
<td>20%</td>
<td>8.0 \cdot 1010</td>
</tr>
</tbody>
</table>

J.P. Lansberg (IPNO, Paris-Sud U.)

AFTER@LHC

April 4, 2017
Drell-Yan performances for spin analyses

- DY pair production on a transversely polarised target is the aim of several experiments (COMPASS, E1039, STAR, E1027)
- Check the sign change in A_N DY vs SIDIS: hot topic in spin physics!
- With a highly polarised gas target, from an exploration phase to a consolidation phase
- With a 3He$^+$ target, access to the quark Sivers effect in the neutron via DY: unique!

<table>
<thead>
<tr>
<th>Experiment</th>
<th>particles</th>
<th>beam energy (GeV)</th>
<th>\sqrt{s} (GeV)</th>
<th>x^2</th>
<th>\mathcal{L} (cm$^{-2}$s$^{-1}$)</th>
<th>$P_{\text{eff. pol.}}$</th>
<th>F (cm$^{-2}$s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFTER@LHCb</td>
<td>$p + p^+$</td>
<td>7000</td>
<td>115</td>
<td>0.05 ± 0.95</td>
<td>1 · 1013</td>
<td>80%</td>
<td>6.4 · 1012</td>
</tr>
<tr>
<td>AFTER@LHCb</td>
<td>$p + ^3$He$^+$</td>
<td>7000</td>
<td>115</td>
<td>0.05 ± 0.95</td>
<td>2.5 · 1012</td>
<td>23%</td>
<td>1.4 · 1013</td>
</tr>
<tr>
<td>AFTER@ALICE</td>
<td>$p + p^+$</td>
<td>7000</td>
<td>115</td>
<td>0.1 ± 0.3</td>
<td>2.5 · 1011</td>
<td>80%</td>
<td>1.6 · 1011</td>
</tr>
<tr>
<td>COMPASS (CERN)</td>
<td>$\pi^- + p^+$</td>
<td>190</td>
<td>19</td>
<td>0.05 ± 0.55</td>
<td>2 · 1013</td>
<td>18%</td>
<td>6.5 · 1013</td>
</tr>
<tr>
<td>PHENIX/STAR (RHIC)</td>
<td>$p^+ + p^-$</td>
<td>collider</td>
<td>510</td>
<td>0.1 ± 0.8</td>
<td>1 · 1012</td>
<td>60%</td>
<td>4.9 · 1011</td>
</tr>
<tr>
<td>E1039 (FNAL)</td>
<td>$p + p^+$</td>
<td>120</td>
<td>15</td>
<td>0.35 ± 0.9</td>
<td>2 · 1015</td>
<td>90%</td>
<td>7.2 · 1014</td>
</tr>
<tr>
<td>E1027 (FNAL)</td>
<td>$p^+ + p$</td>
<td>15</td>
<td>3.1 ± 0.5</td>
<td>4 · 1015</td>
<td>70%</td>
<td>9.0 · 1013</td>
<td></td>
</tr>
<tr>
<td>NICA (JINR)</td>
<td>$p^+ + p$</td>
<td>26</td>
<td>1.0 ± 0.5</td>
<td>8 · 1011</td>
<td>60%</td>
<td>2.9 · 1011</td>
<td></td>
</tr>
<tr>
<td>fsPHENIX (RHIC)</td>
<td>$p^+ + p^-$</td>
<td>collider</td>
<td>200</td>
<td>0.5 ± 0.5</td>
<td>6 · 1012</td>
<td>50%</td>
<td>1.5 · 1012</td>
</tr>
<tr>
<td>fsPHENIX (RHIC)</td>
<td>$p^+ + p^+$</td>
<td>collider</td>
<td>510</td>
<td>0.5 ± 0.6</td>
<td>2 · 1012</td>
<td>20%</td>
<td>8.0 · 1010</td>
</tr>
<tr>
<td>PANDA (GSI)</td>
<td>$p + p^+$</td>
<td>15</td>
<td>5.5</td>
<td>0.2 ± 0.4</td>
<td>2 · 1012</td>
<td>20%</td>
<td>8.0 · 1010</td>
</tr>
</tbody>
</table>

J.P. Lansberg (IPNO, Paris-Sud U.)
Drell-Yan performances for nuclear matter analysis

Statistical uncertainties smaller than PDF: discriminating power

LHCb

L

pp

L

pp

pA

L

pA

L

pp/

one.fitted

zero.fitted/

one.fitted

L

pA

Pb

L

pA

Pb

one.fitted/

zero.fitted/

zero.fitted/

one.fitted

one.fitted/

zero.fitted/

one.fitted

J.P. Lansberg (IPNO, Paris-Sud U.)

AFTER@LHC

April 4, 2017

13 / 21
Drell-Yan performances for nuclear matter analysis

- New constraints on quark nPDF with DY in pA collisions
Drell-Yan performances for nuclear matter analysis

- New constraints on quark nPDF with DY in pA collisions
- Stat. uncertainties smaller than nPDF: discriminating power

[only 1 bin out of 5 shown; global syst. : pp vs pA lumi.]

\[
L_{pp} = 10 \text{ fb}^{-1}; \quad L_{pPb} = 100 \text{ pb}^{-1}
\]
Open/Closed heavy flavour: kinematical coverage

\[\mu = 100 \text{ GeV} \]

\[2 \leq x \leq 10 \]

\[1 \leq y_{\text{Lab}} \leq 5 \]

\[m_T (\text{GeV}/c^2) \]

\[\sqrt{s_{\text{NN}}} = 115 \text{ GeV} \]

- bottomonium, \(p_T < 15 \text{ GeV}/c \)
- charmonium, \(p_T < 18 \text{ GeV}/c \)
- D meson, \(p_T < 20 \text{ GeV}/c \)
- B meson, \(p_T < 16 \text{ GeV}/c \)
Open heavy flavour: charm

Extremely good prospects to measure charm down to zero over a wider rapidity coverage with extremely high statistical precision in pp, pA and AA collisions.

With a LHCb-like detector, the background is well under control (see below).

Looking at D Kπ gives direct access to charm–anticharm asymmetries.

<table>
<thead>
<tr>
<th>D0 yield per year [per 1 GeV bin]</th>
<th>PT, D0 (GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 fb^{-1} of pp collisions at sqrt(s)=115 GeV</td>
<td>\langle\varepsilon\rangle = 10%; Br_{K\pi} = 3.93%</td>
</tr>
<tr>
<td>Same yields for D^{-} \quad \begin{align*} 2<y_{lab}<3 \ 3<y_{lab}<4 \ 4<y_{lab}<5 \end{align*}</td>
<td></td>
</tr>
</tbody>
</table>
Open heavy flavour: charm

- Extremely good prospects to measure charm
Open heavy flavour: charm

- Extremely good prospects to measure charm
 - down to zero p_T
 - over a wide rapidity coverage
 - with extremely high statistical precision in pp, pA and AA collisions

![Graph showing D^0 yield per year vs. P_{T,D^0} (GeV)]

10 fb^{-1} of pp collisions at $\sqrt{s}=115$ GeV
$\langle \epsilon \rangle = 10\%$; $Br_{K\pi}=3.93\%$

Same yields for D^-
Open heavy flavour: charm

- Extremely good prospects to measure charm
 - down to zero p_T
 - over a wide rapidity coverage
 - with extremely high statistiscal precision in pp, pA and AA collisions
- With a LHCb-like detector, the background is well under control

![Graph showing D^0 yields per year](image)

LHCb preliminary

$\sqrt{s_{NN}} = 110$ GeV pA

$N_{D^0} = 6451 \pm 90$

$\sigma \sim 8$ MeV/c^2
Open heavy flavour: charm

- Extremely good prospects to measure charm
 - down to zero p_T
 - over a wide rapidity coverage
 - with extremely high statistical precision in pp, pA and AA collisions
- With a LHCb-like detector, the background is well under control
- Looking at $D \to K\pi$ gives direct access to charm – anticharm asymmetries
Open charm projections

Longstanding debate in the QCD community: perturbative vs. non-perturbative origin
Relevant for cosmic neutrinos [not well constrained by lack of inputs]

Yield relative uncertainty due to c(x)

10 fb$^{-1}$ of pp collisions at $\sqrt{s} = 115$ GeV

Syst. : 5%, $\varepsilon > 10\%$; 2 < y D_0 < 3, Br$_{K\pi} = 3.93\%

Coloured curves: yield uncertainty from IC central c(x) with scale uncertainty.
AFTER at LHC projected uncertainty

D. Kikola et al. arXiv:/one.fitted/seven.fitted/zero.fitted/two.fitted/.zero.fitted/one.fitted/five.fitted/four.fitted/six.fitted

Can also be collected with a transversely polarised target [Never measured]
Gives access to the tri-gluon correlation and the gluon Sivers effect [related to L_g]

Differences in A_{D^0} and $A_{\bar{D}^0}$ gives access to C-odd correlators [No other facility can directly measure this; PHENIX via charged muons]

Precision at the percent level with AFTER@LHC

[Beware of the unconventional definition of x_F at RHIC which does not correspond to x in the fixed target mode]
Open charm projections

- This huge data sample over a wide kinematical coverage gives a unique handle on the charm content in the proton at high x [Only 1 bin shown]
Open charm projections

- This huge data sample over a wide kinematical coverage gives a unique handle on the charm content in the proton at high x [Only 1 bin shown]
- Longstanding debate in the QCD community: pertubative vs. non-perturbative origin

Open charm projections

- This huge data sample over a wide kinematical coverage gives a unique handle on the charm content in the proton at high x [Only 1 bin shown]
- Longstanding debate in the QCD community: pertubative vs. non-perturbative origin
- Relevant for cosmic neutrinos [not well constrained by lack of inputs]
Open charm projections

- This huge data sample over a wide kinematical coverage gives a unique handle on the charm content in the proton at high x [Only 1 bin shown]
- Longstanding debate in the QCD community: pertubative vs. non-perturbative origin
- Relevant for cosmic neutrinos [not well constrained by lack of inputs]

D^0 can also be collected with a transversely polarised target [Never measured]

Open charm projections

- This huge data sample over a wide kinematical coverage gives a unique handle on the charm content in the proton at high x [Only 1 bin shown]
- Longstanding debate in the QCD community: pertubative vs. non-perturbative origin
- Relevant for cosmic neutrinos [not well constrained by lack of inputs]

- D^0 can also be collected with a transversely polarised target [Never measured]
- Gives access to the tri-gluon correlation and the gluon Sivers effect [related to L_g]

Open charm projections

- This huge data sample over a wide kinematical coverage gives a unique handle on the **charm content in the proton at high** x [Only 1 bin shown]
- Longstanding debate in the QCD community: **pertubative vs. non-perturbative origin**
- Relevant for **cosmic neutrinos** [not well constrained by lack of inputs]

- D^0 can also be collected with a **transversely polarised target** [Never measured]
- Gives access to the tri-gluon correlation and the gluon Sivers effect [related to L_g]
- Differences in $A_{N}^{D^0}$ and $A_{N}^{\bar{D}^0}$ gives access to C-odd correlators [No other facility can directly measure this; PHENIX via charged muons arXiv:1703.09333]

[Beware of the unconventional definition of x_F at RHIC which does not correspond to $x_1 - x_2$ in the fixed target mode]
Open charm projections

- This huge data sample over a wide kinematical coverage gives a unique handle on the charm content in the proton at high x [Only 1 bin shown]
- Longstanding debate in the QCD community: pertubative vs. non-perturbative origin
- Relevant for cosmic neutrinos [not well constrained by lack of inputs]

- D^0 can also be collected with a transversely polarised target [Never measured]
- Gives access to the tri-gluon correlation and the gluon Sivers effect [related to L_g]
- Differences in $A_N^{D^0}$ and $A_N^{ar{D}^0}$ gives access to C-odd correlators [No other facility can directly measure this; PHENIX via charged muons arXiv:1703.09333]
- Precision at the per cent level with AFTER@LHC

[Beware of the unconventional definition of x_F at RHIC which does not correspond to $x_1 - x_2$ in the fixed target mode]
Our aim is to measure a complete set of heavy-flavours to use them as tools [gluon luminometers (TMDs, PDFs, nPDFs), QGP effects]
Quarkonium Projections

Our aim is to measure a complete set of heavy-flavours to use them as tools
[gluon luminometers (TMDs, PDFs, nPDFs), QGP effects]

- Wide rapidity coverage; P_T up 20 GeV, down to 0 GeV
 [Rapidity coverage important to pin down nuclear effects]

Quarkonium Projections

Our aim is to measure a **complete set of heavy-flavours** to use them as tools [gluon luminometers (TMDs, PDFs, nPDFs), QGP effects]

- **Wide rapidity coverage**: P_T up 20 GeV, down to 0 GeV

 [Rapidity coverage important to pin down nuclear effects]

- Typically 10^9 charmonia, 10^6 bottomonia per year

\[J/\psi: 10^4 \text{ events at} \ P_T \simeq 12 \text{ GeV} \]

\[\Upsilon : 200 \text{ events at} \ P_T \simeq 12 \text{ GeV} \]

\[J/\psi: \text{ reach cut by the detector acceptance} \]

\[\Upsilon : 200 \text{ events at} \ y_{c.m.s.} \simeq -2.1, \text{ i.e.} \ x_2 \simeq 0.7 \]
Quarkonium Projections

Our aim is to measure a complete set of heavy-flavours to use them as tools [gluon luminometers (TMDs, PDFs, nPDFs), QGP effects]

- Wide rapidity coverage; P_T up 20 GeV, down to 0 GeV

 [Rapidity coverage important to pin down nuclear effects]

- Typically 10^9 charmonia, 10^6 bottomonia per year

- Unique opportunity to access to C-even quarkonia ($\chi_{c,b}, \eta_c$) + associated production

J/ψ: 10^4 events at $P_T \simeq 12$ GeV

Υ: 200 events at $P_T \simeq 12$ GeV

J/ψ: reach cut by the detector acceptance

Υ: 200 events at $y_{c.m.s.} \simeq -2.1$, i.e. $x_2 \simeq 0.7$
Quarkonium Projections

Our aim is to measure a complete set of heavy-flavours to use them as tools [gluon luminometers (TMDs, PDFs, nPDFs), QGP effects]

- Wide rapidity coverage; P_T up 20 GeV, down to 0 GeV
 [Rapidity coverage important to pin down nuclear effects]

- Typically 10^9 charmonia, 10^6 bottomonia per year
- Unique opportunity to access to C-even quarkonia (χ_{c,b, η_c}) + associated production
- Full background simulations show very good prospects in all systems

J/ψ: 10^4 events at
$P_T \approx 12$ GeV
Υ: 200 events at
$P_T \approx 12$ GeV
Quarkonium Projections 2

\[\text{forallquarkonia}(J \sim \psi, \psi, \Upsilon, \Upsilon^\dagger, \chi_c, b, \eta_c) \text{can be measured} \]

D. Kikola et al. /one.fitted/seven.fitted/two.fitted./zero.fitted/one.fitted/five.fitted/four.fitted/six.fitted

[Sofar, only \(J \sim \psi \) by PHENIX with large uncertainties]

Also access on polarised neutron (He) at the percent level!

\[\begin{array}{c} 0.3 \\ -0.25 \\ -0.2 \\ -0.15 \\ -0.1 \\ -0.05 \\ -0 \\ 0.05 \\ 0.1 \\ \end{array} \]

\[\begin{array}{c} \psi \\ J/ N \\ A \end{array} \]

\[\begin{array}{c} 0.2 \\ -0.15 \\ -0.1 \\ -0.05 \\ -0 \\ 0.05 \\ 0.1 \\ 0.15 \end{array} \]

\[= 200 \text{ GeV} \] (Phys. Rev. D 82, 112008 (2010))

\[\text{Stat. unc. projection} = 115 \text{ GeV} \]

\[p+p^{-1} = 10.00 \text{ fb} \]

\[\text{pp} \]

\[L = 0.8 \]

\[P_{\text{eff. pol.}} = 0.8 \]

\[\begin{array}{c} 0.4 \\ -0.35 \\ -0.3 \\ -0.25 \\ -0.2 \\ -0.15 \\ -0.1 \\ -0.05 \\ -0 \\ 0.05 \\ 0.1 \\ \end{array} \]

\[\begin{array}{c} N \\ A \\ 0.6 \\ -0.4 \\ -0.2 \\ -0 \\ 0.2 \\ 0.4 \\ 0.6 \end{array} \]

\[= 0.8 \]

\[P_{\text{eff. pol.}} = 115 \text{ GeV} \]

\[p+p^{-1} = 10 \text{ fb} \]

\[\text{pp} \]

\[L = 0.6 \]

\[P_{\text{eff. pol.}} = 115 \text{ GeV} \]

\[p+p^{-1} = 10 \text{ fb} \]

\[\text{pp} \]

\[L = 0.8 \]

\[P_{\text{eff. pol.}} = 0.8 \]

[4 bins with equal yields]
Quarkonium Projections 2

- A_N for all quarkonia (J/ψ, ψ', $\Upsilon(nS)$, $\chi_{c,b}$ & η_c) can be measured

D. Kikola et al. 1702.01546 [hep-ex]

[So far, only J/ψ by PHENIX with large uncertainties]
Quarkonium Projections 2

- A_N for all quarkonia ($J/\psi, \psi', \Upsilon(nS), \chi_{c,b} & \eta_c$) can be measured

 D. Kikola et al. 1702.01546 [hep-ex]

 [So far, only J/ψ by PHENIX with large uncertainties]

\begin{align*}
\text{Stat. unc. projection} & = 115 \text{ GeV} \\
\text{eff. pol. } P & = 0.8 \\
\text{Eff. pol. } P & = 0.6
\end{align*}
Quarkonium Projections 2

- A_N for all quarkonia (J/ψ, ψ', $\Upsilon(nS)$, $\chi_{c,b}$ & η_c) can be measured [D. Kikola et al. 1702.01546 [hep-ex]]
- [So far, only J/ψ by PHENIX with large uncertainties]
- Also access on polarised neutron ($^3\text{He}^\uparrow$) at the per cent level!
Quarkonium Projections 2

- \(A_N \) for all quarkonia \((J/\psi, \psi', \Upsilon(nS), \chi_{c,b} \& \eta_c)\) can be measured \cite{Kikola2017}
 [So far, only \(J/\psi \) by PHENIX with large uncertainties]
- Also access on polarised neutron \((^3\text{He}^+)\) at the per cent level!

- Completely new perspectives to study the gluon Sivers effect [and beyond \(\mathcal{L}_g \)]

\[\begin{align*}
A_N^{J/\psi} & = \frac{0.2}{0.5} \text{ at } \sqrt{s} = 200 \text{ GeV} \quad \text{(Phys. Rev. D 82, 112008 (2010))} \\
A_N^{\Upsilon(1S)} & = \frac{0.4}{1} \text{ at } \sqrt{s} = 115 \text{ GeV} \quad \text{(Stat. unc. projection)}
\end{align*} \]
Quarkonium Projections 2

- A_N for all quarkonia (J/ψ, ψ', $\Upsilon(nS)$, $\chi_{c,b}$ & η_c) can be measured \cite{Kikola2017}
 [So far, only J/ψ by PHENIX with large uncertainties]
- Also access on polarised neutron (3He$^+$) at the per cent level!

- Completely new perspectives to study the gluong Sivers effect \cite{Lansberg2017}
 [and beyond $\rightarrow L_g$]
- Di-J/ψ allow one to study the k_T dependence of the gluong Sivers function for the very first time!
UPC in the fixed target mode and J/ψ production

JPL, L. Massacrier, L. Szymanowski, J. Wagner, in progress
UPC in the fixed target mode and J/ψ production

JPL, L. Massacrier, L. Szymanowski, J. Wagner, in progress

- $\gamma_p^{\text{beam}} \approx 7450 \ (E_p = 7000 \text{ GeV})$
- $\gamma_{\text{Pb beam}} \approx 2940 \ (E_{\text{Pb}} = 2760 \text{ GeV})$
- $E_{\gamma}^{\text{max}} \approx \gamma_{\text{lab}}^{\text{beam}} \times 30 \text{ MeV} \ (1/(R_{\text{Pb}} + R_p) \approx 30 \text{ MeV})$
UPC in the fixed target mode and J/ψ production

- $\gamma_{\text{lab}}^{p \text{ beam}} \approx 7450 \ (E_p = 7000 \text{ GeV})$
- $\gamma_{\text{lab}}^{\text{Pb beam}} \approx 2940 \ (E_{\text{Pb}} = 2760 \text{ GeV})$
- $E_{\gamma}^{\text{max}} \approx \gamma_{\text{lab}}^{\text{beam}} \times 30 \text{ MeV} \ (1/(R_{\text{Pb}} + R_p) \approx 30 \text{ MeV})$
- $\sqrt{s_{\gamma p}} = \sqrt{2m_p E_{\gamma}} \text{ up to } 20 \text{ GeV}$
UPC in the fixed target mode and J/ψ production

- $\gamma^p_{lab} \text{ beam} \approx 7450 \ (E_p = 7000 \text{ GeV})$
- $\gamma^{\text{Pb beam}}_{lab} \approx 2940 \ (E_{\text{Pb}} = 2760 \text{ GeV})$
- $E^\text{max}_\gamma \approx \gamma^\text{beam}_{lab} \times 30 \text{ MeV} \ (1/(R_{\text{Pb}} + R_p) \approx 30 \text{ MeV})$
- $\sqrt{s_{\gamma p}} = \sqrt{2m_p E_\gamma}$ up to 20 GeV
- $\mathcal{L}_{\text{PbH}} \approx 0.1 \text{ pb}^{-1}; \mathcal{L}_{\text{PH}} \approx 10 \text{ fb}^{-1}$
- $A^{\gamma p \rightarrow J/\psi}_{N} \propto \sqrt{t_0 - t} \text{Im}(\mathcal{E}_g^* \mathcal{H}_g) \rightarrow$ access to the GPD E_g and the gluon OAM.
UPC in the fixed target mode and J/ψ production

- $\gamma_{\text{lab}}^p \approx 7450$ ($E_p = 7000$ GeV)
- $\gamma_{\text{lab}}^{\text{Pb beam}} \approx 2940$ ($E_{\text{Pb}} = 2760$ GeV)
- $E_{\gamma}^{\text{max}} \approx \gamma_{\text{lab}}^{\text{beam}} \times 30$ MeV ($1/(R_{\text{Pb}} + R_p) \approx 30$ MeV)
- $\sqrt{s_{\gamma p}} = \sqrt{2m_p E_{\gamma}}$ up to 20 GeV
- $\mathcal{L}_{\text{PbH}}^+ \approx 0.1$ pb$^{-1}$; $\mathcal{L}_{\text{PH}}^+ \approx 10$ fb$^{-1}$
- $A_{N}^{\gamma p \to J/\psi} \propto \sqrt{t_0 - t \text{Im}(E^* H_g)} \rightarrow$ access to the GPD E_g and the gluon OAM

In the LHCb acceptance (muon cuts):

- $\sigma [Pb \to^{1-\gamma} (\text{Pb}) J/\psi (p) \times \text{Br}(J/\psi \to \mu\mu)]$ via 1-photon exchanges: 16 nb
- $\sigma [p p \to^{1-\gamma} (p) J/\psi (p) \times \text{Br}(J/\psi \to \mu\mu)]$ via 1-photon exchanges: 34 pb
UPC in the fixed target mode and J/ψ production

- $\gamma_{\text{lab}}^p \approx 7450 \; (E_p = 7000 \; \text{GeV})$
- $\gamma_{\text{lab}}^{\text{Pb beam}} \approx 2940 \; (E_{\text{Pb}} = 2760 \; \text{GeV})$
- $E_{\gamma}^{\text{max}} \approx \gamma_{\text{lab}}^{\text{beam}} \times 30 \; \text{MeV} \; (1/(R_{\text{Pb}} + R_p) \approx 30 \; \text{MeV})$
- $\sqrt{s_{\gamma p}} = \sqrt{2m_pE_{\gamma}}$ up to 20 GeV
- $\mathcal{L}_{\text{PbH}}^+ \approx 0.1 \; \text{pb}^{-1}; \; \mathcal{L}_{\text{PH}}^+ \approx 10 \; \text{fb}^{-1}$
- $A_{N}^{\gamma p^{+} \rightarrow J/\psi p} \propto \sqrt{t_0 - \text{Im}(E_g^* \mathcal{H}_g)} \rightarrow$ access to the GPD E_g and the gluon OAM

- In the LHCb acceptance (muon cuts):
 - $\sigma[\text{Pb}p^{1-\gamma} \rightarrow (\text{Pb})J/\psi(p) \times \text{Br}(J/\psi \rightarrow \mu\mu)]$ via 1-photon exchanges : 16nb
 - $\sigma[pp^{1-\gamma} \rightarrow (p)J/\psi(p) \times \text{Br}(J/\psi \rightarrow \mu\mu)]$ via 1-photon exchanges : 34pb
 - 1600 dimuon events with the Pb beam [which we know for sure to be the γ emitter]
 - 340 000 dimuon events with the p beam [each p can emit; possible $\Omega\overline{\Omega}$P contributions]
Conclusions

- **Three main themes push for a fixed-target program at the LHC**
 [without interfering with the other experiments]
Conclusions

- **Three main themes push for a fixed-target program at the LHC** [without interfering with the other experiments]
 - The high x frontier: new probes of the confinement and connections with astroparticles
Conclusions

- **Three main themes push for a fixed-target program at the LHC**
 - Without interfering with the other experiments
 - The high x frontier: new probes of the confinement and connections with astroparticles
 - The nucleon spin and the transverse dynamics of partons
Conclusions

- **Three main themes push for a fixed-target program at the LHC**
 [without interfering with the other experiments]
 - The high x frontier: new probes of the confinement and connections with astroparticles
 - The nucleon spin and the transverse dynamics of partons
 - The approach to the deconfinement phase transition:
 new energy, new rapidity domain and new probes
Conclusions

- **Three main themes push for a fixed-target program at the LHC**
 [without interfering with the other experiments]
 - The high x frontier: new probes of the confinement and connections with astroparticles
 - The nucleon spin and the transverse dynamics of partons
 - The approach to the deconfinement phase transition:
 new energy, new rapidity domain and new probes

- **2 ways towards fixed-target collisions with the LHC beams**
Conclusions

- **Three main themes push for a fixed-target program at the LHC**
 [without interfering with the other experiments]
 - The high x frontier: new probes of the confinement and connections with astroparticles
 - The nucleon spin and the transverse dynamics of partons
 - The approach to the deconfinement phase transition: new energy, new rapidity domain and new probes

- **2 ways towards fixed-target collisions with the LHC beams**
 - A slow extraction with a bent crystal
 - An internal gas target inspired from SMOG@LHCb/Hermes/...
Conclusions

- **Three main themes push for a fixed-target program at the LHC**
 [without interfering with the other experiments]
 - The high x frontier: new probes of the confinement and connections with astroparticles
 - The nucleon spin and the transverse dynamics of partons
 - The approach to the deconfinement phase transition: new energy, new rapidity domain and new probes

- **2 ways towards fixed-target collisions with the LHC beams**
 - A slow extraction with a bent crystal
 - An internal gas target inspired from SMOG@LHCb/Hermes/...

Outlooks

For the update of the Strategy for Particle Physics, CERN has triggered the creation of a working group for the “Physics Beyond Colliders” whose mandate is to explore the opportunities offered by the CERN accelerator complex to address some of today's outstanding questions in particle physics through experiments complementary to high-energy colliders and other initiatives in the world.

The kick-off workshop took place last September at CERN after LHC was one of the proposed ideas (one talk). Very recent outcome: creation of two fitted WGs – after LHC considered as a core project.

Accelerator [to study possible implementation of the project at CERN] and Physics [to study the physics case [...]] and optimized detectors including siting options.

Creation of five fitted Accelerator sub-WGs: Beam Dump Facility, EDM ring, Conventional beams, LHC Fixed Target, Technology. Thus, one uniquely devoted to LHC Fixed-Target whose goal is a CDR putting together UA nine fitted, LHC Collimation, after...

The physics of after LHC is also included in the physics sub-WG for QCD [the other is for BSM].

Two fitted after LHC representatives named (C.Hadjidakis for the Accelerator WG; myself for the physics one) + contact persons for ALICE (A.Dainese) and for LHCb (M.Ferro-Luzzi).

In parallel, we pursue our effort to finalize the Expression of Interest. Inputs are still welcome until June.
Outlooks

For the Update of the Strategy for Particle Physics, CERN has triggered the creation of a working group for the ”Physics Beyond Colliders” whose mandate is to

Explore the opportunities offered by the CERN accelerator complex to address some of today’s outstanding questions in particle physics through experiments complementary to high-energy colliders and other initiatives in the world.
Outlooks

- For the Update of the Strategy for Particle Physics, CERN has triggered the creation of a working group for the ”Physics Beyond Colliders” whose mandate is to *Explore the opportunities offered by the CERN accelerator complex to address some of today’s outstanding questions in particle physics through experiments complementary to high-energy colliders and other initiatives in the world.*

- The kick-off workshop took place last September at CERN
For the Update of the Strategy for Particle Physics, CERN has triggered the creation of a working group for the ”Physics Beyond Colliders” whose mandate is to **Explore the opportunities offered by the CERN accelerator complex to address some of today’s outstanding questions in particle physics through experiments complementary to high-energy colliders and other initiatives in the world.**

The kick-off workshop took place last September at CERN

AFTER@LHC was one of the proposed ideas (one talk)
Outlooks

- For the Update of the Strategy for Particle Physics, CERN has triggered the creation of a working group for the ”Physics Beyond Colliders” whose mandate is to *Explore the opportunities offered by the CERN accelerator complex to address some of today’s outstanding questions in particle physics through experiments complementary to high-energy colliders and other initiatives in the world.*

- The kick-off workshop took place last September at CERN
- AFTER@LHC was one of the proposed ideas (one talk)
- Very recent outcome: creation of 2 WGs – AFTER@LHC considered as a core project
 - Accelerator [to study possible implementation of the projects at CERN]
 - Physics [to study the physics case [..] and optimize detectors including siting options.]
Outlooks

- For the Update of the Strategy for Particle Physics, CERN has triggered the creation of a working group for the "Physics Beyond Colliders" whose mandate is to explore the opportunities offered by the CERN accelerator complex to address some of today’s outstanding questions in particle physics through experiments complementary to high-energy colliders and other initiatives in the world.

- The kick-off workshop took place last September at CERN
- AFTER@LHC was one of the proposed ideas (one talk)
- Very recent outcome: creation of 2 WGs – AFTER@LHC considered as a core project
 - Accelerator [to study possible implementation of the projects at CERN]
 - Physics [to study the physics case [..] and optimize detectors including siting options.]
- Creation of 5 Accelerator sub-WGs: Beam Dump Facility, EDM ring, Conventional beams, LHC Fixed Target, Technology
For the Update of the Strategy for Particle Physics, CERN has triggered the creation of a working group for the ”Physics Beyond Colliders” whose mandate is to
Explore the opportunities offered by the CERN accelerator complex to address some of today’s outstanding questions in particle physics through experiments complementary to high-energy colliders and other initiatives in the world.

- The kick-off workshop took place last September at CERN
- AFTER@LHC was one of the proposed ideas (one talk)
- Very recent outcome: creation of 2 WGs – AFTER@LHC considered as a core project
 - Accelerator [to study possible implementation of the projects at CERN]
 - Physics [to study the physics case [...] and optimize detectors including siting options.]
- Creation of 5 Accelerator sub-WGs: Beam Dump Facility, EDM ring, Conventional beams, LHC Fixed Target, Technology
- Thus, one uniquely devoted to LHC Fixed-Target whose goal is a
 CDR putting together UA9, LHC Collimation, AFTER...
Outlooks

For the Update of the Strategy for Particle Physics, CERN has triggered the creation of a working group for the ”Physics Beyond Colliders” whose mandate is to explore the opportunities offered by the CERN accelerator complex to address some of today’s outstanding questions in particle physics through experiments complementary to high-energy colliders and other initiatives in the world.

The kick-off workshop took place last September at CERN

AFTER@LHC was one of the proposed ideas (one talk)

Very recent outcome: creation of 2 WGs – AFTER@LHC considered as a core project

- Accelerator [to study possible implementation of the projects at CERN]
- Physics [to study the physics case [...] and optimize detectors including siting options.]

Creation of 5 Accelerator sub-WGs: Beam Dump Facility, EDM ring, Conventional beams, LHC Fixed Target, Technology

Thus, one uniquely devoted to LHC Fixed-Target whose goal is a CDR putting together UA9, LHC Collimation, AFTER...

The physics of AFTER@LHC is also included in the physics sub-WG for QCD [the other is for BSM]
Outlooks

For the Update of the Strategy for Particle Physics, CERN has triggered the creation of a working group for the ”Physics Beyond Colliders” whose mandate is to **Explore the opportunities offered by the CERN accelerator complex to address some of today’s outstanding questions in particle physics through experiments complementary to high-energy colliders and other initiatives in the world.**

- The kick-off workshop took place last September at CERN
- AFTER@LHC was one of the proposed ideas (one talk)
- Very recent outcome: creation of 2 WGs – AFTER@LHC considered as a core project
 - Accelerator [to study possible implementation of the projects at CERN]
 - Physics [to study the physics case [...] and optimize detectors including siting options.]
- Creation of 5 Accelerator sub-WGs: Beam Dump Facility, EDM ring, Conventional beams, LHC Fixed Target, Technology
- Thus, one uniquely devoted to LHC Fixed-Target whose goal is a **CDR putting together UA9, LHC Collimation, AFTER...**
- The physics of AFTER@LHC is also included in the physics sub-WG for QCD [the other is for BSM]
- 2 AFTER@LHC representatives named (C. Hadjidakis for the Accelerator WG; myself for the physics one) + contact persons for ALICE (A. Dainese) and for LHCb (M. Ferro-Luzzi)
For the Update of the Strategy for Particle Physics, CERN has triggered the creation of a working group for the ”Physics Beyond Colliders” whose mandate is to *Explore the opportunities offered by the CERN accelerator complex to address some of today’s outstanding questions in particle physics through experiments complementary to high-energy colliders and other initiatives in the world.*

The kick-off workshop took place last September at CERN

AFTER@LHC was one of the proposed ideas (one talk)

Very recent outcome: creation of 2 WG – AFTER@LHC considered as a core project

- **Accelerator** [to study possible implementation of the projects at CERN]
- **Physics** [to study the physics case [...] and optimize detectors including siting options.]

Creation of 5 Accelerator sub-WGs: Beam Dump Facility, EDM ring, Conventional beams, LHC Fixed Target, Technology

Thus, one uniquely devoted to LHC Fixed-Target whose goal is a CDR putting together UA9, LHC Collimation, AFTER...

The physics of AFTER@LHC is also included in the physics sub-WG for QCD [the other is for BSM]

2 AFTER@LHC representatives named (C. Hadjidakis for the Accelerator WG; myself for the physics one) + contact persons for ALICE (A. Dainese) and for LHCb (M. Ferro-Luzzi)

In parallel, we pursue our effort to finalise the Expression of Interest → **Inputs are still welcome until June**
Part III

Backup slides
Further quarkonium projections

Hint from Υ data at RHIC
Strongly limited in terms of statistics

A quest for the gluon EMC effect with J/ψ statistical uncertainties are not even visible

A quest for the gluon EMC effect for bottom (onium)

One could access to η_c production in pA collisions for the first time

High stat. quarkonium polarization in pA and AA collisions
Further quarkonium projections

- Large-x gluon nPDF: unknown
- Gluon EMC effect: unknown
Further quarkonium projections

- Large-x gluon nPDF: unknown
- Gluon EMC effect: unknown
- Hint from Υ data at RHIC
Further quarkonium projections

- Large-x gluon nPDF: unknown
- Gluon EMC effect: unknown
- Hint from Υ data at RHIC
- Strongly limited in terms of statistics after 10 years of RHIC:
Further quarkonium projections

- Large-\(x\) gluon nPDF: unknown
- Gluon EMC effect: unknown
- Hint from \(\Upsilon\) data at RHIC
- Strongly limited in terms of statistics after 10 years of RHIC:
- Quest for the gluon antishadowing with \(J/\psi\)

The statistical uncertainties are not even visible
Further quarkonium projections

- Large-\(x \) gluon nPDF: unknown
- Gluon EMC effect: unknown
- Hint from \(\Upsilon \) data at RHIC
- Strongly limited in terms of statistics after 10 years of RHIC
- Quest for the gluon antishadowing with \(J/\psi \)
- Quest for the gluon EMC effect for bottom(onium)

The statistical uncertainties are not even visible
Further quarkonium projections

- Large-\(x\) gluon nPDF: unknown
- Gluon EMC effect: unknown
- Hint from \(\Upsilon\) data at RHIC
- Strongly limited in terms of statistics after 10 years of RHIC:
- Quest for the gluon antishadowing with \(J/\psi\)
- Quest for the gluon EMC effect for bottom(onium)
- One could access to \(\eta_c\) production in \(pA\) collisions for the first time
Further quarkonium projections

- Large-\(x\) gluon nPDF: unknown
- Gluon EMC effect: unknown
- Hint from \(\Upsilon\) data at RHIC
- Strongly limited in terms of statistics after 10 years of RHIC:
- Quest for the gluon antishadowing with \(J/\psi\)
- Quest for the gluon EMC effect for bottom(onium)
- One could access to \(\eta_c\) production in \(pA\) collisions for the first time
- High stat. \(\rightarrow\) quarkonium polarisation in \(pA\) and \(AA\) collisions

J.P. Lansberg (IPNO, Paris-Sud U.)
Further readings

Heavy-Ion Physics

- **Lepton-pair production in ultraperipheral collisions at AFTER@LHC**

Spin physics

Further readings

Hadron structure

- **Double quarkonium production at high Feynman-x**

- **Double-quarkonium production at a fixed-target experiment at the LHC (AFTER@LHC).**

- **Next-To-Leading Order Differential Cross-Sections for Jψ, ψ(2S) and Υ Production in Proton-Proton Collisions at a Fixed-Target Experiment using the LHC Beams (AFTER@LHC)**

- **ηc production in photon-induced interactions at a fixed target experiment at LHC as a probe of the odderon**

- **A review of the intrinsic heavy quark content of the nucleon**

- **Hadronic production of Ξcc at a fixed-target experiment at the LHC**
Further readings

Feasibility study and technical ideas

- **Heavy-ion Physics at a Fixed-Target Experiment Using the LHC Proton and Lead Beams (AFTER@LHC): Feasibility Studies for Quarkonium and Drell-Yan Production**

- **Feasibility Studies for Single Transverse-Spin Asymmetry Measurements at a Fixed-Target Experiment Using the LHC Proton and Lead Beams (AFTER@LHC)**

- **Feasibility studies for quarkonium production at a fixed-target experiment using the LHC proton and lead beams (AFTER@LHC)**
 by L. Massacrier, B. Trzeciak, F. Fleuret, C. Hadjidakis, D. Kikola, J.P.Lansberg, and H.S. Shao

- **A Gas Target Internal to the LHC for the Study of pp Single-Spin Asymmetries and Heavy Ion Collisions**

- **Quarkonium production and proposal of the new experiments on fixed target at LHC**
Fast simulation using LHCb reconstruction parameters
Projection for a LHCb-like detector

- Simulations with Pythia 8.185
- the LHCb detector is NOT simulated but LHCb reconstruction parameters are introduced in the fast simulation (resolution, analysis cuts, efficiencies,...)

Requirements:
- Momentum resolution: $\Delta p/p = 0.5\%$
- Muon identification efficiency: 98%

Cuts at the single muon level
- $2 < \eta_\mu < 5$
- $p_T\mu > 0.7$ GeV

Muon misidentification:
- If π and K decay before the calorimeters (12m), they are rejected by the tracking
- otherwise a misidentification probability is applied following: F. Achilli et al, arXiv:1306.0249