

Searching for the doubly-charged Higgs bosons in the Georgi-Machacek model at the ep colliders

Hao Sun (孙昊) Dalian University of Technology

25th International WS on Deep Inelastic Scattering & Related Topics

Outline

1. Motivation

2. The Georgi-Machacek model

3. Calculation Framework

4. Summary

In order to construct on extended Higgs sector, the following two requirements from the experimental data should be taken into account.

higher isospin multiplet: Higgs Triplet, GM

ρ parameter is very close to unity
FCNC is suppressed

The Georgi-Machacek model

the complex doublet $(\phi^+, \phi^0)^T$ with Y=1 the real triplet $(\xi^+, \xi^0, -\xi^{+*})^T$ with Y=0 the complex triplet $(\chi^{++}, \chi^+, \chi^0)^T$ with Y=2

 $SU(2)_{L} \times SU(2)_{R}$ covariant forms of the fields:

 $L=1/2Tr[(D^{\mu}\Phi)^{\dagger}D_{\mu}\Phi]+1/2Tr[(D^{\mu}\Delta)^{\dagger}D_{\mu}\Delta]-V(\Phi,\Delta)$

$$V(\Phi, \mathbf{X}) = \frac{\mu_2^2}{2} \operatorname{Tr}(\Phi^{\dagger} \Phi) + \frac{\mu_3^2}{2} \operatorname{Tr}(\Delta^{\dagger} \Delta) + \lambda_1 [\operatorname{Tr}(\Phi^{\dagger} \Phi)]^2 + \lambda_2 \operatorname{Tr}(\Phi^{\dagger} \Phi) \operatorname{Tr}(\Delta^{\dagger} \Delta) + \lambda_3 \operatorname{Tr}(\Delta^{\dagger} \Delta \Delta^{\dagger} \Delta) + \lambda_4 [\operatorname{Tr}(\Delta^{\dagger} \Delta)]^2 - \lambda_5 \operatorname{Tr}(\Phi^{\dagger} \tau^a \Phi \tau^b) \operatorname{Tr}(\Delta^{\dagger} t^a \Delta t^b) - M_1 \operatorname{Tr}(\Phi^{\dagger} \tau^a \Phi \tau^b) (U \Delta U^{\dagger})_{ab} - M_2 \operatorname{Tr}(\Delta^{\dagger} t^a \Delta t^b) (U \Delta U^{\dagger})_{ab}.$$

The Georgi-Machacek model

 $SU(2)_{L} \times SU(2)_{R} \underline{break} SU(2)_{V}$

The Georgi-Machacek model

• preserves the relationship $\rho = 1 \left(\rho = \frac{M^2 w}{M^2 z \cos^2 \theta_w} \right)$ at the tree level via SU(2) custodial symmetry

GM model features

• implement the seesaw mechanism to make the neutrinos with naturally light Majorana masses[type-II seesaw]

• the tree-level couplings of the SM-like Higgs to fermions and vector bosons may be enhanced in comparison to the SM

 the appearance of the H±W∓Z coupling at the tree level

• doubly charged scalar particles $(H_5^{\pm\pm})$

 $\sigma(e-p \rightarrow v_e H_5^- j)$

Signal

Background

- $\nu_{e}jww: e^{-}p \rightarrow \nu_{e}jW^{-}W^{-}$ $\nu_{e}jwz: e^{-}p \rightarrow \nu_{e}jW^{-}Z$
 - $\nu_{\rm e} jzz : e^- p \rightarrow \nu_{\rm e} jZZ$
 - $ejwz: e^-p \rightarrow e^-jW^-Z$
 - $ejzz: e^-p \rightarrow e^-jZZ.$

Compare to ILC

ILC delphes card used

Summary

- 1. In GM, 5-plets have the doubly-charged states, so that the distinct phenomenological features should appear.
- 2. The LHC data will set more stringent constraints on the parameter space of its production.
- 3. Here we study doubly-charged Higgs boson VBF production at the ep collider and compare to a similar 5-plet HV associate production at the ILC.
- 4. We found that at the FCC-eh, the lowest necessary luminosity with the same discovery significance are much reduced than that of LHeC as expected, while both of them are much smaller than that of ILC.

