Deuteron spin structure in inclusive and tagged spectator processes in the virtual nucleon approximation

Wim Cosyn

Ghent University, Belgium

DIS XXV
University of Birmingham
Inclusive DIS from polarized deuteron

Tagged spectator DIS from polarized deuteron

Polarized spin 1 particle

- Spin state described by a 3*3 density matrix in a basis of spin 1 states polarized along the collinear virtual photon-target axis

\[W_D^{\mu\nu} = \text{Tr}[\rho_{\lambda\lambda'} W^{\mu\nu}(\lambda'\lambda)] \]

- Characterized by 3 vector and 5 tensor parameters

\[S^\mu = \langle \hat{W}^\mu \rangle, \quad T^{\mu\nu} = \frac{1}{2} \sqrt{\frac{2}{3}} \langle \hat{W}^\mu \hat{W}^\nu + \hat{W}^\nu \hat{W}^\mu + \frac{4}{3} \left(g^{\mu\nu} - \frac{\hat{P}^\mu \hat{P}^\nu}{M^2} \right) \rangle \]

- Split in longitudinal and transverse components

\[
\rho_{\lambda\lambda'} = \frac{1}{3} \begin{bmatrix}
1 - \frac{3}{2} S_L + \sqrt{\frac{3}{2}} T_{LL} & \frac{3}{2\sqrt{2}} S_\perp e^{i(\phi_h - \phi_S)} + \sqrt{3} T_{L\perp} e^{i(\phi_h - \phi_{T_L})} & \frac{3}{2} T_{\perp\perp} e^{i(2\phi_h - 2\phi_{T\perp})} \\
\frac{3}{2\sqrt{2}} S_\perp e^{-i(\phi_h - \phi_S)} & 1 - \sqrt{6} T_{LL} & \frac{3}{2\sqrt{2}} S_\perp e^{i(\phi_h - \phi_S)} - \sqrt{3} T_{L\perp} e^{i(\phi_h - \phi_{T_L})} \\
\sqrt{\frac{3}{2}} T_{\perp\perp} e^{-i(2\phi_h - 2\phi_{T\perp})} & \frac{3}{2\sqrt{2}} S_\perp e^{-i(\phi_h - \phi_S)} - \sqrt{3} T_{L\perp} e^{-i(\phi_h - \phi_{T_L})} & 1 + \frac{3}{2} S_L + \sqrt{\frac{3}{2}} T_{LL}
\end{bmatrix}
\]
\[\frac{d\sigma}{dx\,dQ^2} = \frac{\pi y^2 \alpha^2}{Q^4(1 - \epsilon)} \left[F_{UU,T} + \epsilon F_{UU,L} + T_{LL} \left(F_{UT_{LL,T}} + \epsilon F_{UT_{LL,L}} \right)
ight. \\
+ \left. T_{L\perp} \cos \phi_{TL} \sqrt{2\epsilon(1 + \epsilon)} F_{UT_{LT}}^{\cos \phi_{TL}} + T_{\perp\perp} \cos(2\phi_{TL}) \epsilon F_{UT_{TT}}^{\cos(2\phi_{TL})} \right], \]

- 4 tensor polarized structures can be related to the \(b_{1-4} \) introduced by Hoodbhoy, Jaffe, Manohar [Nucl. Phys. B 312]

\[F_{UT_{LL,T}} = -\frac{1}{x} \sqrt{\frac{2}{3}} \left[2(1 + \gamma^2)xb_1 - \gamma^2 \left(\frac{1}{6}b_2 - \frac{1}{2}b_3 \right) \right] \]

- Alternative set of \(b_{1-3, \Delta} \) by Edelmann Piller Weise [Z. Phys. A 357]. Two sets are **equal only in the scaling limit**!

- In the parton model: distribution of unpol. quarks in pol. hadron

\[b_1 = \frac{1}{2} \sum_q e_q^2 (q^0 - q^1) \]

- Obeys Callan-Gross like relation in the scaling limit \(2xb_1(x) = b_2(x) \)

- Obeys Kumano-Close sum rule \(\int dx b_1(x) = 0 \) [PRD42, 2377]
\[b_1 \] for the deuteron

- \(np \)-component: \(b_1 \) is only non-zero due to the \(D \)-wave admixture in the deuteron, small.

- Interplay of nuclear and quark degrees of freedom.

- Measured @ Hermes [PRL95, 242001], not small + sign change. No agreement with conventional deuteron models.

- Upcoming measurements at JLab12 for \(x < 1 \) (DIS) and \(x > 1 \) (QE) [arXiv:1311.4835]

- Also possible @ Fermilab in DY [Kumano, Song, PRD94, 054022], EIC with polarized deuteron beam and ILC with a fixed target experiment
Conventional calculations for deuteron b_1

- Important to provide an accurate calculation of deuteron b_1 in a conventional nuclear model to constrain possible exotic mechanisms.

- Consider np component, convolution approach [unpol. nucleon structure \otimes pol. deuteron momentum distribution].

- Only one (?) published Khan, Hoodbhoy [PRC44, 1219].

![Chart](image)

FIG. 2. $b_1^p(x)$ (solid curve), the s-d contribution to $b_1^p(x)$ (dashed curve), and the d-d contribution to $b_1^p(x)$ (dot-dashed curve).

- Updated check in two similar models: one standard convolution model with instant form deuteron wave function, one in the virtual nucleon approximation with light-front deuteron wf [arXiv:1702.05337].
Model 1: standard convolution picture

- $W_{\mu\nu}^A(P_A, q) = \int d^4 p \, S(p) \, W_{\mu\nu}^N(p, q)$

- Relation between b_1 and helicity amplitudes in **scaling limit**

 $b_1 = A_{+0,+0} - \frac{A_{++,++} + A_{+-,+-}}{2}$

\[
\begin{align*}
 b_1(x, Q^2) &= \int \frac{dy}{y} \, \delta_T f(y) \, F_1^N(x/y, Q^2) \\
 \delta_T f(y) &= \int d^3 p \, y \left[-\frac{3}{4\sqrt{2\pi}} \phi_0(p)\phi_2(p) + \frac{3}{16\pi} |\phi_2(p)|^2 \right] \times (3 \cos^2 \theta - 1) \, \delta \left(y - \frac{p \cdot q}{M_{N\nu}} \right)
\end{align*}
\]

- Deuteron wave function obeys baryon number conservation
- Nucleon structure functions include HT contributions, nuclear part does not
Model 2: virtual nucleon approximation

- Non-interacting “spectator” on-shell, photon interacts with off-shell nucleon

\[b_1 = -\frac{1}{1+\gamma^2} \sqrt{\frac{3}{8}} \left[F_{UT_{LL},T} + F_{UT_{TT}}^\text{cos}(2\phi_{T\perp}) \right]. \]

- Structure functions computed in the IA, no scaling limit applied, HT nuclear effects included.

- Deuteron light-front wave function, obeys baryon and momentum sum rules.

\[
W_{\mu\nu}^{\lambda',\lambda}(P, q) = 4(2\pi)^3 \int \frac{\alpha_i d^3 k}{2E_k(2\pi)^3} \frac{\alpha_N}{\alpha_i} W_{\mu\nu}^N(p_i, q) \rho_D(\lambda', \lambda)
\]

\[
b_1(x, Q^2) = \frac{3}{4(1 + \gamma^2)} \int \frac{k^2}{\alpha_i} dk d(\cos \theta_k) \left[F_1^N(x_i, Q^2) \left(6 \cos^2 \theta_k - 2 \right) \right. \\
\left. - \frac{T^2}{2 p_i \cdot q} F_2^N(x_i, Q^2) \left(5 \cos^2 \theta_k - 1 \right) \right] \left[\frac{U(k) W(k)}{\sqrt{2}} + \frac{W(k)^2}{4} \right]
\]
Comparison between two models

MSTW08 nucleon pdfs, CDBonn deuteron wf, SLAC $R = F_L/F_T$

- Differences with Khan, Hoodbhoy calculation
 - different sign SD term
 - non-zero distribution at $x > 1$

- Significant nuclear higher-twist effects at low Q^2
- DD-term is not small (given $\sim 5\% D$-wave admixture)
Comparison with Hermes data

\[Q^2 = 2.5 \text{ GeV}^2 \]

- Clear mismatch between data and calculations in size
- Future JLab12 data should shed more light
- Possible contribution from exotic mechanism → Miller [PRC89, 045203]
 - hidden color + pions
- Higher twist effects?

MSTW08

SLAC (Bodek, Ricci)
How was b_1 extracted?

- **Experimental measured asymmetry** [θ_q is angle between momentum transfer and polarization axis]

$$A_{zz} = \frac{2\sigma^+ - 2\sigma^0}{2\sigma^+ + \sigma^0} = \frac{\sqrt{2}}{4\sqrt{3}(F_{UU,T} + \epsilon F_{UU,L})} \left\{ [1 + 3 \cos 2\theta_q] (F_{UT_{LL},T} + \epsilon F_{UT_{LL},L}) +
\right.$$\

$$\left. 3 \sin 2\theta_q \sqrt{2\epsilon (1 + \epsilon)} F_{UT_{LL}}^{\cos \phi_T} + 3[1 - \cos 2\theta_q] \epsilon F_{UT_{TT}}^{\cos 2\phi_T} \right\},$$

- **Only** when $\theta_q = 0$ and scaling relations applied, higher twist $b_{3,4}$ neglected, we have

$$A_{zz} \rightarrow \sqrt{\frac{2}{3}} \frac{F_{UT_{LL},T}}{F_{UU,T}} \rightarrow -\frac{2}{3} \frac{b_1}{F_1}$$

- Q^2-range of Hermes experiment quite low values: 0.5–5 GeV2
Calculation of $b_{1,4}$ in VNA model

<table>
<thead>
<tr>
<th>x</th>
<th>Q^2 (GeV2)</th>
<th>$b_1 (10^{-4})$</th>
<th>$b_2 (10^{-5})$</th>
<th>$b_3 (10^{-3})$</th>
<th>$b_4 (10^{-3})$</th>
<th>$b_2/(2xb_1)$</th>
<th>$\gamma = 2Mx/Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.012</td>
<td>0.51</td>
<td>2.81</td>
<td>0.264</td>
<td>-1.34</td>
<td>5.06</td>
<td>0.783</td>
<td>0.0315</td>
</tr>
<tr>
<td>0.032</td>
<td>1.06</td>
<td>6.92</td>
<td>1.97</td>
<td>-1.87</td>
<td>7.51</td>
<td>0.890</td>
<td>0.0583</td>
</tr>
<tr>
<td>0.063</td>
<td>1.65</td>
<td>3.50</td>
<td>0.265</td>
<td>-2.02</td>
<td>7.96</td>
<td>0.120</td>
<td>0.0920</td>
</tr>
<tr>
<td>0.128</td>
<td>2.33</td>
<td>-1.80</td>
<td>-7.38</td>
<td>-2.13</td>
<td>7.49</td>
<td>3.20</td>
<td>0.157</td>
</tr>
<tr>
<td>0.248</td>
<td>3.11</td>
<td>-8.39</td>
<td>-28.1</td>
<td>-2.09</td>
<td>4.58</td>
<td>1.35</td>
<td>0.264</td>
</tr>
<tr>
<td>0.452</td>
<td>4.69</td>
<td>-6.18</td>
<td>-21.7</td>
<td>-1.11</td>
<td>-0.58</td>
<td>0.777</td>
<td>0.392</td>
</tr>
</tbody>
</table>

- VNA calculation only including pn IA contribution
- Higher twist b_3, b_4 not small compared to b_1, b_2
- Callan–Gross relation not satisfied
- “Improved” extraction feasible?
- Direct comparison of VNA calculations of A_{zz} at largest x value is still two orders of magnitude too small!
Final-state interactions in A_{zz}

- Only resonance contributions considered in the FSI, eikonal rescattering of produced X with spectator nucleon
- JLab 12 GeV kinematics considered
- Only spin independent FSI included
- Non-negligible contribution from FSI even at low x, but not enough to match Hermes data
- Convolution (D-wave dominance \rightarrow high spectator momenta) can pick up resonance contributions through the convolution
- Size of FSI effects decreases at higher Q^2 (phase-space effect)

WC, W. Melnitchouk, MS, PRC89 ('14)
Tagged spectator DIS process with deuteron

- DIS off a nuclear target with a slow (relative to nucleus c.m.) nucleon detected in the final state
- Control nuclear configuration
- Advantages for the deuteron
 - simple NN system, non-nucleonic ($\Delta\Delta$) dof suppressed
 - active nucleon identified
 - recoil momentum selects nuclear configuration (medium modifications)
 - limited possibilities for nuclear FSI, calculable

- Wealth of possibilities to study (nuclear) QCD dynamics
- Will be possible in a wide kinematic range @ EIC (polarized for JLEIC)
- suited for colliders: no target material, forward detection, transverse pol. → R. Ent’s talk on Wed
- fixed target CLAS BONuS limited to recoil momenta ~ 70 MeV
Pole extrapolation for on-shell nucleon structure

- Allows to extract free neutron structure in a **model independent** way
 - Recoil momentum p_R controls off-shellness of neutron $t - m_N^2$
 - Free neutron at pole $t - m_N^2 \to 0$: "on-shell extrapolation"
 - Small deuteron binding energy results in small extrapolation length
 - Eliminates nuclear binding and FSI effects
 [Sargsian, Strikman PLB ’05]

- D-wave suppressed at on-shell point \to neutron $\sim 100\%$ polarized

- Precise measurements of neutron structure at an EIC
Spin 1 SIDIS: General structure of cross section

- To obtain structure functions, enumerate all possible tensor structures that obey hermiticity and transversality condition ($qW = Wq = 0$)
- Cross section has 41 structure functions,

$$\frac{d\sigma}{dx dQ^2 d\phi} = \frac{y^2 \alpha^2}{Q^4(1-\epsilon)} (F_U + F_S + F_T) d\Gamma_{ph},$$

$U + S$ part identical to spin 1/2 case [Bacchetta et al. JHEP ('07)]

\[
F_U = F_{UU,T} + \epsilon F_{UU,L} + \sqrt{2\epsilon(1+\epsilon)} \cos \phi_h F_{UU}^{\cos \phi_h} + \epsilon \cos 2\phi_h F_{UU}^{\cos 2\phi_h} + h\sqrt{2\epsilon(1-\epsilon)} \sin \phi_h F_{LU}^{\sin \phi_h}
\]

\[
F_S = S_L \left[\sqrt{2\epsilon(1+\epsilon)} \sin \phi_h F_{USL}^{\sin \phi_h} + \epsilon \sin 2\phi_h F_{USL}^{\sin 2\phi_h} \right]
\]

\[
+ S_L h \left[\sqrt{1-\epsilon^2} F_{LSL} + \sqrt{2\epsilon(1-\epsilon)} \cos \phi_h F_{LSL}^{\cos \phi_h} \right]
\]

\[
+ S_L \left[\sin(\phi_h - \phi_S) \left(F_{UST,T}^{\sin(\phi_h-\phi_S)} + \epsilon F_{UST,L}^{\sin(\phi_h-\phi_S)} \right) + \epsilon \sin(\phi_h + \phi_S) F_{UST}^{\sin(\phi_h+\phi_S)}
\right]
\]

\[
+ \epsilon \sin(3\phi_h - \phi_S) F_{UST}^{\sin(3\phi_h-\phi_S)} + \sqrt{2\epsilon(1+\epsilon)} \left(\sin \phi_S F_{UST}^{\sin \phi_S} + \sin(2\phi_h - \phi_S) F_{UST}^{\sin(2\phi_h-\phi_S)} \right)
\]

\[
+ S_L h \left[\sqrt{1-\epsilon^2} \cos(\phi_h - \phi_S) F_{LSL}^{\cos(\phi_h-\phi_S)} + \sqrt{2\epsilon(1-\epsilon)} \left(\cos \phi_S F_{LSL}^{\cos \phi_S} + \cos(2\phi_h - \phi_S) F_{LSL}^{\cos(2\phi_h-\phi_S)} \right) \right]
\]
Spin 1 SIDIS: General structure of cross section

- To obtain structure functions, enumerate all possible tensor structures that obey hermiticity and transversality condition \(qW = Wq = 0 \)
- Cross section has 41 structure functions,

\[
\frac{d\sigma}{dx dQ^2 d\phi'} = \frac{y^2 \alpha^2}{Q^4(1-\epsilon)} (F_U + F_S + F_T) d\Gamma_{P_h},
\]

- 23 SF unique to the spin 1 case (tensor pol.), 4 survive in inclusive \((b_{1-4})\) [Hoodbhoy, Jaffe, Manohar PLB’88]

\[
F_T = T_{LL} \left[F_{UT_{LL},T} + \epsilon F_{UT_{LL},L} + \sqrt{2\epsilon(1+\epsilon)} \cos \phi_h F_{UT_{LL}}^{\cos \phi_h} + \epsilon \cos 2\phi_h F_{UT_{LL}}^{\cos 2\phi_h} \right]
\]

\[
+ T_{LL} h \sqrt{2\epsilon(1-\epsilon)} \sin \phi_h F_{LT_{LL}}^{\sin \phi_h}
\]

\[
+ T_{L\perp} [\cdots] + T_{L\perp} h [\cdots]
\]

\[
+ T_{\perp\perp} \left[\cos(2\phi_h - 2\phi_{T\perp}) \left(F_{UT_{TT},T}^{\cos(2\phi_h-2\phi_{T\perp})} + \epsilon F_{UT_{TT},L}^{\cos(2\phi_h-2\phi_{T\perp})} \right) + \epsilon \cos 2\phi_{T\perp} F_{UT_{TT}}^{\cos 2\phi_{T\perp}} + \epsilon \cos(4\phi_h - 2\phi_{T\perp}) F_{UT_{TT}}^{\cos 4\phi_h-2\phi_{T\perp}} \right.
\]

\[
+ \sqrt{2\epsilon(1+\epsilon)} \left(\cos(\phi_h - 2\phi_{T\perp}) F_{UT_{TT}}^{\cos(\phi_h-2\phi_{T\perp})} + \cos(3\phi_h - 2\phi_{T\perp}) F_{UT_{TT}}^{\cos(3\phi_h-2\phi_{T\perp})} \right) \right]
\]

\[
+ T_{\perp\perp} h [\cdots]
\]
Hadronic tensor can be written as a product of nucleon hadronic tensor with deuteron light-front densities

$$\mathcal{W}^\mu_\nu_D(\lambda', \lambda) = 4(2\pi)^3 \frac{\alpha_R}{2 - \alpha_R} \sum_{i=U,z,x,y} \mathcal{W}^\mu_\nu_N,i\rho_D^i(\lambda', \lambda),$$

All SF can be written as

$$F^k_{ij} = \{\text{kin. factors}\} \times \{F_{1,2}(\tilde{x}, Q^2) \text{or } g_{1,2}(\tilde{x}, Q^2)\} \times \{\text{bilinear forms in deuteron radial wave function } U(k), W(k)\}$$

In the IA the following structure functions are zero → sensitive to FSI

- beam single-spin asymmetry $[F_{LU}^{\sin \phi_h}]$
- target vector polarized single-spin asymmetry [8 SFs]
- target tensor polarized double-spin asymmetry [7 SFs]
Unpolarized structure function

\[(F_T + \epsilon F_L) \times (m_N^2 - t)^2 / \text{residue}^2\]

CM energy \(s_{eN} = 1000 \text{ GeV}^2\)
\(x = 0.05, Q^2 = 20 \text{ GeV}^2, \alpha_R = 1.\)

- Extrapolation for \((m_N^2 - t) \rightarrow 0\) corresponds to on-shell neutron \(F_{2N}(x, Q^2)\)
- Clear effect of deuteron D-wave, largest in the region dominated by the tensor part of the \(NN\)-interaction
- D-wave drops out at the on-shell point
Tagging: free neutron structure

Precise measurements of F_{2n}

- F_{2n} extracted with percent-level accuracy at $x < 0.1$
- Uncertainty mainly systematic (JLab LDRD project: detailed estimates)
- In combination with proton data non-singlet $F_{2p} - F_{2n}$, sea quark flavor asymmetry $\bar{d} - \bar{u}$
Polarized structure function

- **Spin asymmetry**

\[A_\parallel = \frac{\sigma(++) - \sigma(-+) - \sigma(+-) + \sigma(---)}{\sigma(++) + \sigma(-+) + \sigma(+-) + \sigma(---)} \phi_{h_{\text{avg}}} \]

\[= \frac{F_{LSL}}{F_T + \epsilon F_L} \propto \frac{g_{1n}}{F_{1n}} \]

- Again clear contribution from D-wave at finite recoil momenta

- Relativistic spin nuclear effects through Melosh rotations in deuteron light-front wf, grow with recoil momenta

- Both effects drop out near the on-shell extrapolation point
Tagging: polarized neutron structure

On-shell extrapolation of double spin asymm.

\[A_{||} = \frac{\sigma(++) - \sigma(\sim\sim) - \sigma(+-) + \sigma(--)}{\sigma(++) + \sigma(\sim\sim) + \sigma(+-) + \sigma(--)} [\phi_{havg}] = \frac{F_{LS}}{F_T + \epsilon F_L} = D \frac{g_{1n}}{F_{1n}} + \cdots \]

Systematic uncertainties cancel in ratio (momentum smearing, resolution effects)

Statistics requirements

- Physical asymmetries
 \[\sim 0.05 - 0.1 \]
- Effective polarization
 \[P_e P_D \sim 0.5 \]
- Luminosity required
 \[\sim 10^{34} \text{cm}^{-2} \text{s}^{-1} \]

Conclusions

- Calculation of b_1 in standard convolution models
 - differences with older calculation
 - contributions from nuclear higher twist effects, account for in experimental extraction from the measured asymmetry
 - exotic mechanism contributing?
 - upcoming measurements at JLab12, possibilities at future facilities

- Tagged spectator DIS at an EIC with polarized deuteron
 - new possibilities to probe spin (41 structure functions)
 - pole extrapolation allows to extract neutron structure at the on-shell point, without nuclear effects
 - LDRD project at JLab, open to collaboration!
 - Lots of extensions possible (FSI, exclusive channels, other nuclei, EMC effect,...)