

Nucleon Tomography through Deeply Virtual Compton Scattering @ CLAS and CLAS12

Daria Sokhan

University of Glasgow, UK

25th International Workshop on Deep Inelastic Scattering and Related Topics University of Birmingham, UK — 5th April 2017

A full knowledge of the nucleon

Images of the nucleon

Images of the nucleon

Generalised Parton Distributions

 $f(x,b_1)$

Wigner function: full phase space parton distribution of the nucleon

Generalised Parton Distributions (GPDs)

> relate, in the infinite momentum frame, transverse position of partons (*b*_⊥) to their longitudinal momentum (*x*):
> tomography of the nucleon.

 $\int d^2 k_T$

 Deep exclusive reactions, e.g.: Deeply Virtual Compton Scattering (talk by C. Munoz Camacho), Deeply Virtual Meson Production (talks: T. Horn, C. Van Hulse, F. Sabatié), ...

GPDs and DVCS

***Deeply Virtual Compton Scattering:** golden channel for the extraction of GPDs.

$$Q^{2} = -(\mathbf{p}_{e} - \mathbf{p}_{e}')^{2}$$
 $t = (\mathbf{p}_{n} - \mathbf{p}_{n}')^{2}$

Bjorken variable:
$$x_B = \frac{Q^2}{2\mathbf{p}_n \cdot \mathbf{q}}$$

 $x \pm \xi$ longitudinal momentum fractions of the struck parton

 $\xi \cong \frac{x_B}{2 - x_B}$

* At high exchanged Q^2 and low t access to four GPDs: $E^q, \tilde{E}^q, H^q, \tilde{H}^q(x, \xi, t)$

* Can be related to PDFs:

$$H(x, 0, 0) = q(x)$$
 $H(x, 0, 0) = \Delta q(x)$

and form factors:

$$\int_{-1}^{+1} H dx = F_1 \qquad \int_{-1}^{+1} \tilde{H} dx = G_A$$
$$\int_{-1}^{+1} E dx = F_2 \qquad \int_{-1}^{+1} \tilde{E} dx = G_P$$

*Small changes in nucleon transverse momentum allows mapping of transverse structure at large distances: **confinement**.

GPDs and nucleon spin

$$J_{N} = \frac{1}{2} = \frac{1}{2}\Sigma_{q} + L_{q} + J_{g}$$

* Ji's relation: $J^q = \frac{1}{2} - J^g = \frac{1}{2} \int_{-1}^{1} x dx \left\{ H^q(x,\xi,0) + E^q(x,\xi,0) \right\}$

 H^q accessible in DVCS off the proton, first experimental constraint on E^q , through neutron-DVCS:

M. Mazouz et al, PRL 99 (2007) 242501

* GPDs can provide insight into the orbital angular momentum contribution to nucleon spin: the spin puzzle.

Measuring DVCS

* Process measured in experiment:

Compton Form Factors in DVCS

Experimentally accessible in DVCS cross-sections and spin asymmetries, eg:

Which DVCS experiment? γ* Real parts of CFFs accessible in cross-sections and leptonic plane e double polarisation asymmetries, hadronic imaginary parts of CFFs in plane single-spin asymmetries. Beam, target Neutron Proton polarisation $Im\{\boldsymbol{H}_{\mathbf{p}}, H_{\mathbf{p}}, E_{\mathbf{p}}\}$ $\Delta \sigma_{LU} \sim \frac{\sin \phi}{\sqrt{3}} \Im (F_1 H + \xi G_M \tilde{H} - \frac{t}{\sqrt{M^2}} F_2 E) d\phi$ $Im\{H_n, H_n, E_n\}$ $\Delta \sigma_{UL} \sim \frac{\sin \phi}{t} \Im(F_1 \tilde{H} + \xi G_M (H + \frac{x_B}{2} E)) -\xi \frac{t}{4M^2} F_2 \tilde{E} + \dots) d\phi$ $Im\{H_{p}, H_{p}\}$ $Im\{H_n, E_n, E_n\}$ $Im\{H_{p}, E_{p}\}$ $Im\{H_{n}\}$ $\Delta \sigma_{UT} \sim \cos \phi \,\Im(\frac{t}{{}^{\Lambda}M^2}(F_2H - F_1E) + \ldots)d\phi$ $\Delta \sigma_{LL} \sim (A + B \cos \phi) \Re (F_1 \tilde{H} + \xi G_M (H + \frac{x_B}{2} E) + ...) d\phi$ $Re\{H_{\mathbf{p}}, \overline{H}_{\mathbf{p}}\}$ $Re\{\boldsymbol{H}_{n}, E_{n}, E_{n}\}$

()

JLab: 6 GeV era

CEBAF: Continuous Electron Beam Accelerator Facility.

★ Energy up to ~6 GeV

***** Energy resolution: $\delta E/E_e \sim 10^{-5}$

* Longitudinal electron polarisation up to $\sim 85\%$

12 GeV era

* Maximum electron energy: 12 GeV to new Hall D

Very large acceptance detector array for multi-particle final states.

H1, ZEUS

CLAS12: Very large acceptance, high luminosity (~10³⁵ cm⁻² s⁻¹)

CLAS unpolarised cross-sections

Beam-spin Asymmetry (A_{LU})

Follows first CLAS measurement: S. Stepanyan *et al* (CLAS), *PRL* 87 (2001) 182002

A_{LU} from fit to asymmetry:

$$A_i = \frac{\alpha_i \sin \phi}{1 + \beta_i \cos \phi}$$

A_{LU} characterised by imaginary parts of CFFs via: $F_1 H + \xi G_M \tilde{H} - \frac{t}{4M^2} E$

Qualitative agreement with models, constraints on fit parameters.

F.-X. Girod *et al* (CLAS Collaboration), *PRL* 100 (2008) 162002

Follows first CLAS measurement: S. Chen *et al* (CLAS Collaboration), *PRL* 97 (2006) 072002

A_{UL} from fit to asymmetry:

$$A_i = \frac{\alpha_i \sin \phi}{1 + \beta_i \cos \phi}$$

A_{UL} characterised by imaginary parts of CFFs via: $x_{R} = \xi t = z_{R}$

$$F_1 \tilde{\boldsymbol{H}} + \xi G_M (\boldsymbol{H} + \frac{x_B}{2} \boldsymbol{E}) - \frac{\zeta \iota}{4M^2} F_2 \tilde{\boldsymbol{E}} + \dots$$

High statistics, large kinematic coverage, strong constraints on fits, simultaneous fit with BSA from the same dataset.

E. Seder *et al* (CLAS Collaboration), *PRL* 114 (2015) 032001
S. Pisano *et al* (CLAS Collaboration), *PRD* 91 (2015) 052014

Beam- and target-spin asymmetries

S. Pisano *et al* (CLAS Collaboration), *PRD* **91** (2015) 052014 E. Seder *et al* (CLAS Collaboration), *PRL* **114** (2015) 032001

Double-spin Asymmetry (A_{LL})

E. Seder *et al* (CLAS Collaboration), *PRL* 114 (2015) 032001
S. Pisano *et al* (CLAS Collaboration), *PRD* 91 (2015) 052014

A_{LL} from fit to asymmetry: $\frac{\kappa_{LL} + \lambda_{LL} \cos \phi}{1 + \beta \cos \phi}$

A_{LL} characterised by real parts of CFFs via:

 $F_1\tilde{H} + \xi G_M(H + \frac{x_B}{2}E) + \dots$

 Fit parameters extracted from a simultaneous fit to BSA, TSA and DSA.

CFF extraction from three spin asymmetries at common kinematics.

CFFs from the cross-sections

H.-S. Jo et al (CLAS Collaboration), PRL 115 (2015) 212003

What can we learn from the asymmetries?

Answers hinge on a global analysis of all available data (*See talk by P. Sznajder on PARTONS*).

$$H^q(x, 0, 0) = f_1(x)$$

 $\tilde{H}^q(x, 0, 0) = g_1(x)$

Information on relative distributions of quark momenta (PDFs) and quark helicity, $\Delta q(x)$.

Indications that axial charge is more concentrated than electromagnetic charge

E. Seder *et al* (CLAS Collaboration), *PRL* **114** (2015) 032001 S. Pisano *et al* (CLAS Collaboration), *PRD* **91** (2015) 052014

Future DVCS with CLAS12

DVCS with CLAS12

E12-06-109: Longitudinally polarised NH_3 and ND_3 targets

Projected sensitivities to CFF: CLAS12

Projections for *Im(H)* and *Im(E)* up and down CFFs to be extracted from approved CLAS12 experiments.

Using VGG fit (M. Guidal)

To conclude...

* Measurements of cross-sections and asymmetries in dedicated, high statistics DVCS experiments with 6 GeV and CLAS provide some of the first extractions of the Compton Form Factors in the valence quark region: tentative conclusions on relative quark distributions.

* A wide programme planned for CLAS12 in the 12 GeV era: higher luminosity, higher precision, wider reach of phase space, greater range of observables.

***** Global analyses of all data a necessity for nucleon tomography.

***** JLab @ 12 GeV: exciting opportunities for the study of nucleon structure.

***** Watch this space!

... is hard to come by

G. Renee Guzlas, artist.

Images of the nucleon: III

 $f(x,b_1)$

Wigner function: full phase space parton distribution of the nucleon

Generalised Parton Distributions (GPDs)

relate, in the infinite momentum frame, transverse position of partons (*b*_⊥) to their longitudinal momentum (*x*): tomography of the nucleon.

 $\int d^2 k_T$

* Deep exclusive reactions, e.g.: Deeply Virtual Compton Scattering, Deeply Virtual Meson Production, Time-like Compton Scattering, ...

Images of the nucleon: IV

Wigner function: full phase space parton distribution of the nucleon

Generalised Parton Distributions (GPDs)

Fourier Transform of electric Form Factor: transverse charge density of a nucleon

proton

neutron

C. Carlson, M. Vanderhaeghen PRL 100, 032004 (2008)

Beam-spin asymmetry: proton-DVCS

Experiment E12-06-119

$$\begin{split} P_{beam} &= 85\% \\ L &= 10^{35} \ cm^{-2} s^{-1} \\ 1 &< Q^2 &< 10 \ GeV^2 \\ 0.1 &< x_B^2 &< 0.65 \\ -t_{min}^2 &- t &< 2.5 \ GeV^2 \end{split}$$

Unpolarised liquid H₂ target:

- 80 days
- Statistical error: 1% 10% on $\sin \varphi$ moments
- Systematic uncertainties: ~ 6 8%

Beam-spin asymmetry: neutron-DVCS

0

Experiment E12-11-003

$$e + d \rightarrow e' + \gamma + n + (p_s)$$

The **most sensitive** observable to the GPD En

-t 1.2 Simulated statistical sample:

Tentative schedule: 2019

A_{LU} in Neutron DVCS @ 11 GeV

 $J_u = 0.3, J_d = -0.1$ $J_u = 0.3, J_d = 0.1$ $J_u = 0.1, J_d = 0.1$ $J_u = 0.3, J_d = 0.3$

> * At 11 GeV, beam spin asymmetry (A_{LU}) in neutron DVCS *is* very sensitive to J_u, J_d

Fixed kinematics: $x_B = 0.17$ $Q^2 = 2 \text{ GeV}^2$ $t = -0.4 \text{ GeV}^2$

Longitudinally polarised targets

Experiment E12-06-109

Longitudinally polarised NH₃ and ND₃ target:

- 120 days (NH₃) 60 days (ND₃)
- Dynamic Nuclear Polarisation (DNP) of target material, cooled in a *He* evaporation cryostat.
- $P_{\text{proton}} = 80\%$, P_{deuteron} up to 50%
- Statistical error: 2% 15% (NH₃)
- Systematic uncertainties: ~ 6 8% (NH₃),

~ 12% (ND₃)

Target-spin asymmetries in **proton- and neutron-DVCS:**

***** Sensitivity to \tilde{H}_p and H_n .

*In combination with A_{LU} in proton-DVCS, allows flavour separation of H_q .

Transversely polarised target

Experiment E12-12-010: transversely polarised HD target (conditional on target operation with electron beam).

 $\Delta \sigma_{\rm UT} \sim \cos \phi \, \operatorname{Im} \left\{ k(F_2 H - F_1 E) + \dots \right\} d\phi$

Sensitivity to *Im(E)*

Jefferson Lab: 6 GeV era

CEBAF: Continuous Electron Beam Accelerator Facility.

- **★** Energy up to ∼6 GeV
- * Energy resolution $\delta E/E_e \sim 10^{-5}$

***** Longitudinal electron polarisation up to ~85%

Hall A:

* High resolution($\delta p/p = 10^{-4}$) spectrometers, very high luminosity.

Hall B: CLAS

 Very large acceptance, detector array for multiparticle final states.

Hall C:

Two movable spectrometer arms, well-defined acceptance, high luminosity

Jefferson Lab: 12 GeV era

Maximum electron energy: 12 GeV to new Hall D

11 GeV deliverable to Halls A, B and C

Hall A: High resolution spectrometers, large installation experiments

Hall B: CLAS12

Very large acceptance, high luminosity

Hall D: 9 GeV tagged polarised photons, full acceptance detector

Super-nign Momentum Spectrometer added, very high luminosity