Overview of the SIDIS/TMD program at Jefferson Lab

Andrew Puckett University of Connecticut

4/4/2017

DIS 2017: 25th International Workshop on Deep Inelastic Scattering and Related Topics

Outline

- Introduction: Single-hadron SIDIS process and TMD formalism
- The Continuous Electron Beam Accelerator Facility at Jefferson Lab
	- Experimental Halls at 6 GeV
	- The 12 GeV Upgrade
- Selected highlights from the 6 GeV era
- Overview of 11 GeV SIDIS program in Halls A, B, and C
- Summary and Outlook

Semi-Inclusive Deep Inelastic Scattering

- Detecting the leading (high-energy) hadrons in DIS collisions; i.e., the single inclusive hadron electroproduction *N(e,e'h)X* process provides sensitivity to additional aspects of the nucleon's partonic structure not accessible in inclusive DIS, including:
	- quark flavor
	- quark transverse momentum
	- quark transverse spin

• *Goal of SIDIS studies is (spin-correlated) 3D imaging of nucleon's quark structure in momentum space.*

• Transverse Momentum Dependent (TMD) PDF formalism: *Bacchetta et al. JHEP 02 (2007) 093, Boer and Mulders, PRD 57, 5780 (1998), etc, etc...*

SIDIS Kinematics—Notation and Definitions

 $Q^2 = (k - k')^2 = 4E_eE'_e\sin^2\left(\frac{\theta_e}{2}\right)$, Momentum transfer $x = \frac{Q^2}{2Mv}$, quark momentum fraction $v = \frac{P \cdot q}{M} = E_e - E'_e$, N rest frame E_{loss} $y = \frac{P \cdot q}{P \cdot k} = \frac{V}{E_e}$ $W^{2} = (P+q)^{2} = M^{2} + Q^{2} \frac{1-x}{r}, \gamma^{*} N$ invariant mass $z = \frac{P \cdot P_h}{P \cdot a} = E_h/v$, Hadron energy fraction $p_T^h = \left| \mathbf{p}_h - \left(\frac{\mathbf{p}_h \cdot \mathbf{q}}{|\mathbf{q}|^2} \right) \mathbf{q} \right|$, Hadron transverse momentum ϕ_h = Angle between lepton and hadron planes ϕ_S = Angle between lepton plane and nucleon spin $W'^{2} = M_{X}^{2} = (P + q - P_{h})^{2}$, Missing mass

UCONN Jefferson Lab

General Expression for SIDIS Cross Section: *Bacchetta et al., JHEP 02, 093 (2007)*

$$
\frac{d\sigma}{dxdydzd\phi_h d\phi_S dp_T^2} = \frac{\alpha^2 y^2}{xyQ^2 2(1-\epsilon)} \left(1 + \frac{\gamma^2}{2x}\right) \left\{ F_{UU,T} + \epsilon F_{UU,L} + \epsilon F_{UU,L}
$$

UCONN Jefferson Lab

Quark-parton Model Interpretation of SIDIS: Transverse Momentum Dependent PDFs (TMDs)

SIDIS Structure Functions in Terms of TMDs

 $F_{UU,T}$ ~ $f_1 \otimes D_1$ $F_{UU}^{\cos 2\phi_h}$ $\sim h_1^{\perp} \otimes H_1^{\perp}$ $F_{UL}^{\sin 2\phi_h}$ ~ $h_{1L}^{\perp} \otimes H_1^{\perp}$ $F_{LL} \sim g_1 \otimes D_1$ $F_{UT}^{\sin(\phi_h - \phi_S)} \sim f_{1T}^{\perp}$ $\sim f_{1T}^{\perp} \otimes D_1$ $F_{IIT}^{\sin(\phi_h+\phi_S)}$ $\frac{H}{U}$ ^M U ^{+ φ s) ~ $h_1 \otimes H_1^{\perp}$} $F_{UT}^{\sin(3\phi_h - \phi_S)}$ \sim h_{11}^{\perp} $\frac{1}{1}T \otimes H_1^{\perp}$ $F_{I.T}^{\cos(\phi_h-\phi_S)}$ \sim $g_{1T} \otimes D_1$

- Only f_1 , g_1 , h_1 survive integration over quark k_T
- All eight leading-twist TMDs are accessible in SIDIS with polarized beams/targets via azimuthal angular dependence of the SIDIS cross section
- Physical observables are convolutions over two (unobserved) transverse momenta:
	- Initial quark k_T
	- Hadron p_T relative to recoiling quark, generated during fragmentation
- $D_1(z,Q^2,p_\perp^2)$ = Unpolarized TMD FF $H_1^{\perp}(z,Q^2,p_{\perp}^2)$ = Collins TMD FF

CEBAF @ Jefferson Lab

JLab Aerial View $\frac{11(12) \text{ GeV to Halls A/B/C (1)}}{ \cdot \text{Current (up to 180 \mu A CW)}}$

- Superconducting RF electron linacs with up to 5X recirculation
- CW ("100%" duty factor) operation (2 ns) bunch period, ~ 0.3 ps bunch length)
- Polarized source: up to 85-90% polarization
- Three experimental Halls
- Energy up to 6 GeV (upgrade will increase to $11(12)$ GeV to Halls A/B/C (D))
-

The 12 GeV Upgrade of CEBAF

Site Aerial, June 2012

- Superconducting RF electron linacs with up to 5X recirculation
- CW (100% duty factor) operation
- Polarized source: up to 85% polarization
- Three experimental Halls
- Energy up to 11(12) GeV at 5 (5.5) passes to Halls A/B/C (D)

Accessible phase space in fixed-target at 6 GeV

Above: phase space with SIDIS cuts (*before considering any detector acceptances*), E=6 GeV $Q^2 \ge 1$ GeV², $W > 2$ GeV, $M_X > 1.5$ GeV, $p_h \ge 2$ GeV **ONN** Jefferson Lab UCI **4/4/17 DIS 2017, Birmingham, UK 10**

Brand new! Hall A SIDIS cross sections: ${}^{3}He(e, e^{2}\pi^{+/-})X$

• X. Yan *et al.*, published March 24, 2017: Phys. Rev. C **95**, 035209 (2017): E = 5.9 GeV, 0.12 < $x < 0.45$, $0.45 < z < 0.65$, $0.05 < p_T < 0.55$ GeV/c, $1 < Q^2 < 4$ GeV²

Jefferson Lab

Ш

Accessible phase space in fixed-target at 11 GeV

Above: phase space with SIDIS cuts (*before considering any detector acceptances*), E=11 GeV $Q^2 > 1$ GeV², $W > 2$ GeV, $M_X > 1.5$ GeV, $p_h > 2$ GeV **UCONN Jefferson Lab 4/4/17 DIS 2017, Birmingham, UK 12**

E12-09-018: Transverse Target SSA in 3He(e,e'h)X

- **E12-09-018** in Hall A: transverse spin physics with high-luminosity polarized 3He.
- 40 (20) days production at $E = 11$ (8.8) GeV—significant Q² range at fixed x
- Collins, Sivers, Pretzelosity, A_{LT} for $n(e,e'h)X$, $h = \pi^+/\pi^-\pi^0/K^+/K^-$
- Re-use HERMES RICH detector for charged hadron PID
- Reach high x (up to \sim 0.7) and high statistical FOM (\sim 1,000X Hall A E06-010 @6 GeV)

Jefferson Lab

SBS+BB Projected Results: Collins and Sivers SSAs

Projected AUT Sivers vs. x (11 GeV data only) Projected AUT Collins vs. x (11 GeV data only)

• E12-09-018 will achieve statistical FOM for the neutron ~100X better than HERMES proton data and ~1000X better than E06-010 neutron data.

• Kaon and neutral pion data will aid flavor decomposition, and understanding of reaction-mechanism effects.

SBS+BB Projected Precision in 2D (x,z) binning

• 2D Extraction: Sivers A_{UT} in n(e,e' π ⁺)X, 6 x bins 0.1 < x < 0.7, 5 z bins 0.2 < z < 0.7

• Curves are phenomenological predictions from global analysis (Anselmino et al.) with central value and error band

Jefferson Lab

SIDIS Studies with CLAS12 in Hall B

- CLAS12 is a large-acceptance, general purpose detector for charged and neutral particles, p \sim 1 GeV, scattering angles from 5-135 deg, near 2π azimuthal angle acceptance, luminosity up to 10^{35} cm⁻² s⁻¹
- Large acceptance for broad-based surveys of total accessible phase space with 11 GeV beam

UCONN Jefferson Lab

CLAS12 SIDIS Program

- SIDIS unpolarized cross section $(F_{UU}, A_{UU}^{\cos(2\phi)}, A_{UU}^{\cos(\phi)},$ etc.) and beam spin asymmetry $A_{LU}^{sin(\phi)}$ measurements w/broad kinematic acceptance on unpolarized H, D targets:
	- CLAS12 Run-group A (139 d, unpolarized H₂): E12-06-112 (A)
	- CLAS12 Run-group B (90 d, unpolarized D_2): E12-11-109a, E12-09-007a (A-), E12-09-008 (A-)
- A_{UL} , A_{UL} for SIDIS on longitudinally polarized proton (NH₃) and deuteron (ND_3) targets:
	- CLAS12 Run-group C (170 d): E12-07-107 (A-), E12-11-109b, E12-09-007b, E12-09-009 (B+)
- SIDIS on transversely polarized proton (HDice) target:
	- CLAS12 Run-group G (110 d): C12-11-111, C12-12-009. **Expected HDice luminosity ~1034**

CLAS12 A_{UT} projections—1D

O 9

 \circ Ò

 0.6

0

z

 0.5

1

 P_T [GeV/c]

 1.5

CLAS12 Projections—Sivers Q2 evolution

Projected Sivers A_{UT} precision from CLAS12 w/predicted Q² evolution in a single x bin

Jefferson Lab UCI

CLAS12 SIDIS asymmetries w/longitudinally polarized NH3, ND3

Figure 8: The double spin asymmetries on proton (left) and neutron(right) targets, for π^+ (triangles up), π^- (triangles down) π^0 (empty circles), inclusive electrons (filled circles). The solid line is

Figure 12: The polarization of valence quarks $\left(\frac{\Delta d_V}{dx}\right)$ in the nucleon. The filled symbols are for the SIDIS data only and open symbols are for DIS data neglecting sea contributions. The curves are pQCD based predictions with (solid) and without (dashed) OAM contributions $[29]$.

Experiment E12-07-107: Flavor decomposition and transverse momentum dependence of the nucleon's longitudinal spin structure via double-spin asymmetry A_{LL} measurements p(e,e'h)X and $d(e,e'h)X$

4/4/17 DIS 2017, Birmingham, UK 20

d

X

SOLID in Hall A and Hall C SIDIS program

Solenoidal Large Intensity Device (SOLID): large acceptance and high luminosity spectrometer using GEM technology and reusing existing solenoid magnet Physics program: SIDIS, J/ψ measurements, PVDIS See next talk by Kalyan Allada (MIT)!

Hall C: High Momentum Spectrometer (HMS), and Super-HMS. SIDIS program including precise cross sections measurements, L/T separations, etc. See Ed Kinney (U. Colorado) talk later this session!

Summary and Outlook

- The 6 GeV era demonstrated that a "factorized", partonic interpretation of the SIDIS process is feasible even at the relatively modest energies of JLab.
- The recent 11 GeV upgrade significantly expands the accessible kinematic regime for which "factorization" is expected to be applicable $@JLab$.
- The unparalleled duty factor, luminosity and polarization capability of CEBAF makes the precision "fully differential" 4D mapping of novel spin-azimuthal asymmetries in the SIDIS process possible, particularly in the valence region.
	- Unique worldwide capability of JLab!

NN Jefferson Lab

UCO

• A coherent, comprehensive and exciting program of experiments is planned in Halls A, B and C!

Backup Slides

CEBAF Experimental Halls @6 GeV

- **Hall A**: High resolution $(dp/p \sim 10^{-4})$ spectrometers, small acceptance for targeted measurements w/ wellcontrolled systematics, well-defined kinematics at high luminosities. *NIM A 522, 294 (2004)*
- **Hall B**: Large acceptance, moderate resolution/luminosity for measurement of multiparticle final states with broad kinematic coverage: *NIM A 503, 513 (2003)*
- **Hall C**: High momentum spectromer and Short Orbit Spectrometer—well-controlled acceptance for precise cross section measurements: *PRC 78, 045202 (2008)*

SIDIS Kinematic Coverage in E12-09-018

- Wide, independent coverage of x, z, p_T , $\phi_h \pm \phi_S$ in a single configuration of the two spectrometers
- Q^2 , x strongly correlated due to dimensions of BigBite magnet gap.
- Running time at $E = 11$, 8.8 GeV provide data for significantly different Q^2 at same x
- Systematics control \rightarrow independent spectrometers, detectors in field-free regions, straight-line tracking, simple, well-defined (but adequately large) acceptance, etc.

Jefferson Lab

CLAS12 A_{UT} projections—4D analysis

• Each subpanel shows the 2D (z, p_T) dependence of A_{UT} absolute statistical uncertainty for a given (x,Q^2) bin

NN Jefferson Lab UCI

Hall A "Transversity" Experiment: E06-010

Jefferson Lab

UCONN

- 5.9 GeV beam, ~85% polarized
- Helium-3 target, $\langle P_T \rangle = 55\%$ transverse (vertical and horizontal directions), flip every \sim 20 minutes.
- Average beam current \sim 12 μ A
- Two-month run in Hall A in 2008/2009, expt. E06-010

Collins and Sivers effects: *PRL 107, 072003 (2011)*

- Observed 3He Collins and Sivers asymmetries <5% in magnitude
- Extracted neutron C/S moments consistent w/model predictions available at time of publication
- In the valence region, despite relatively low statistics, E06-010 has best sensitivity to neutron Sivers moments, and comparable precision to COMPASS d-p for Collins moments, after correction for quark depolarization factor $D_{NN} = (1-y)/(1-y + y^2/2)$

• *Impact of E06-010 data from a short-duration run with small-acceptance spectrometers demonstrates power of 3He target and lays foundation for high statistical FOM @11 GeV*Jefferson Lab **4/4/17 DIS 2017, Birmingham, UK 28**

CLAS SIDIS A₁, A_{UL}

 0.1

E HERMES

CLAS

• *PRL 105, 262002 (2010)*

UCI

- E = 5.7 GeV, $I_{\text{beam}} = 5 \text{ nA}, P_{\text{B}} \sim 0.7$
- NH₃ polarized target (DNP method), $P_T \sim$ 0.75.
- Average dilution from unpolarized N, $f_D \sim$ 0.14
- *Also: Higher-precision data from CLAS eg1-dvcs run (2009) still forthcoming!*

Jefferson Lab

$\overset{\overset{\circ}{\alpha}}{\mathbf{z}}^{\overset{1}{\rightarrow}}$ 0.05 0 -0.05 -0.1 **VM** fraction 0.15 $\frac{0.1}{0.05}$ 0.25 0.25 0.25 0.5 Ω 0 Ω $A_1 \propto g_1(x, k_T^2, Q^2) \otimes D_1(z, p_T^2, Q^2)$ $A_{UL}^{\sin(2\phi)} \propto h_{1L}^{\perp}(x, k_T^2, Q^2) \otimes H_1^{\perp}(z, p_T^2, Q^2)$

- First measurement of transverse momentum dependence of A_1 asymmetry in SIDIS
	- Hints at possible helicity-dependence of quark k_T distributions.
- First measurement of non-zero $A_{UL}^{\sin(2\phi)}$, indicating potentially significant quark spinorbit correlations