MCEG for TMD physics: the quest to characterize perturbative and non perturbative QCD phenomena

(On behalf of Jefferson Lab TMD LDRD)

Nobuo Sato
University of Connecticut
25th International Workshop on Deep Inelastic Scattering, Apr 6 2017
Motivations

- **Main objectives:**
 - Urgent requirement: MCEG for TMD physics
 - Language dictionary between in NP and HEP
 - Improve the theoretical framework for TMDs
Motivations

- **Main objectives:**
 - Urgent requirement: MCEG for TMD physics
 - Language dictionary between in NP and HEP
 - Improve the theoretical framework for TMDs

- **Why?**
 - MCEG is a useful theory tool to describe exclusive final states
 - Is a numerical implementation of QCD evolution and nonperturbative physics
 - Needed for high-precision nonperturbative physics
Motivations

- **Main objectives:**
 - Urgent requirement: MCEG for TMD physics
 - Language dictionary between in NP and HEP
 - Improve the theoretical framework for TMDs

- **Why?**
 - MCEG is a useful theory tool to describe exclusive final states
 - Is a numerical implementation of QCD evolution and nonperturbative physics
 - Needed for high-presicion nonperturbative physics

- **What do we need?**
Motivations

Main objectives:
- Urgent requirement: MCEG for TMD physics
- Language dictionary between in NP and HEP
- Improve the theoretical framework for TMDs

Why?
- MCEG is a useful theory tool to describe exclusive final states
- Is a numerical implementation of QCD evolution and nonperturbative physics
- Needed for high-precision nonperturbative physics

What do we need?
- Put a bunch of physicists in a room
Motivations

- **Main objectives:**
 - Urgent requirement: MCEG for TMD physics
 - Language dictionary between in NP and HEP
 - Improve the theoretical framework for TMDs

- **Why?**
 - MCEG is a useful theory tool to describe exclusive final states
 - Is a numerical implementation of QCD evolution and nonperturbative physics
 - Needed for high-precision nonperturbative physics

- **What do we need?**
 - Put a bunch of physicists in a room
 - Use Pythia8+DIRE as a starting point
Motivations

- **Main objectives:**
 - Urgent requirement: MCEG for TMD physics
 - Language dictionary between in NP and HEP
 - Improve the theoretical framework for TMDs

- **Why?**
 - MCEG is a useful theory tool to describe exclusive final states
 - Is a numerical implementation of QCD evolution and nonperturbative physics
 - Needed for high-precision nonperturbative physics

- **What do we need?**
 - Put a bunch of physicists in a room
 - Use Pythia8+DIRE as a starting point
 - Use QCD factorization theorems as a guidance
LDRD personnel

- Jake Ethier
- Eric Moffat
- Andrea Signori

Theorists
- Diefenthaler
- Melnitchouk
- Rogers
- Sato
- Joosten
- Lönnblad
- Prestel
- Collins
- Sjöstrand

Experimentalists

- JLab
- Pythia
- Other

3D Nucleon Tomography, March 16th 2017
Progress

- Validation of Pythia8+DIRE against HERA data
 - Implementation of DIS in pythia8 via DIRE parton shower
 - Dedicated comparisons between HERMES tune in pythia6 with against Pythia8
Progress

- **Validation of Pythia8+DIRE against HERA data**
 - Implementation of DIS in pythia8 via DIRE parton shower
 - Dedicated comparisons between HERMES tune in pythia6 with against Pythia8

- **Dedicated study of FFs in pythia (this talk)**
 - FFs in pythia
 - Validation of DGLAP formalism against parton shower+Lund string model
 - Pythia8+DIRE vs world e^+e^- data
Progress

- **Validation of Pythia8+DIRE against HERA data**
 - Implementation of DIS in pythia8 via DIRE parton shower
 - Dedicated comparisons between HERMES tune in pythia6 with against Pythia8

- **Dedicated study of FFs in pythia (this talk)**
 - FFs in pythia
 - Validation of DGLAP formalism against parton shower+Lund string model
 - Pythia8+DIRE vs world e^+e^- data

- **Extensions of the CSS formalism**
 - Inclusion of string effects in QCD factorization
Validation of Pythia8+DIRE against HERA data

Transverse energy-energy correlation for $x > 10^{-3}$
Factorization in SIDIS

\[\frac{d\sigma}{d\phi} = H \otimes f \otimes D \]

Hadrons can also be produced in the mid rapidity region → see discussion by J. Collins arXiv:1610.09994

String type effects are potentially important

QCD event
Factorization in SIDIS

\[\frac{d\sigma}{d\phi} = H \otimes f \otimes D \]

Hadrons can also be produced in the mid rapidity region → see discussion by J. Collins arXiv:1610.09994

String type effects are potentially important

QCD event

leading region
Factorization in SIDIS

Factorization theorem (current fragmentation):
\[\frac{d\sigma}{d\phi} = H \otimes f \otimes D \]

Hadrons can also be produced in the mid rapidity region → see discussion by J. Collins arXiv:1610.09994

String type effects are potentially important

QCD event
leading region
factorization
Factorization in SIDIS

- **QCD event**
- **leading region**
- **factorization**

- **Factorization theorem (current fragmentation):**
 \[\frac{d\sigma}{d\phi} = H \otimes f \otimes D \]

Hadrons can also be produced in the mid rapidity region \(\rightarrow \) see discussion by J. Collins arXiv:1610.09994

String type effects are potentially important
Factorization in SIDIS

- Factorization theorem (current fragmentation):
 \[\frac{d\sigma}{d\phi} = H \otimes f \otimes D \]

- Hadrons can also be produced in the mid rapidity region → see discussion by J. Collins arXiv:1610.09994
Factorization in SIDIS

QCD event

leading region

factorization

- Factorization theorem (current fragmentation):
 \[\frac{d\sigma}{d\phi} = H \otimes f \otimes D \]

- Hadrons can also be produced in the mid rapidity region → see discussion by J. Collins arXiv:1610.09994

- String type effects are potentially important
3 Jets events: $Q\bar{Q}$ and gluon jets. Jets are projected into a plane

- ψ: angle of a given particle relative to the quark jet with the highest energy
- ψ_A: angle between highest energetic jet and gluon jet
- ψ_C: angle between quark jets

Only events with $\psi_A = \psi_C$ are kept

Particle flow asymmetry is observed → evidence of string effects
3 Jets events: $Q\bar{Q}$ and gluon jets. Jets are projected into a plane

- ψ: angle of a given particle relative to the quark jet with the highest energy
- ψ_A: angle between highest energetic jet and gluon jet
- ψ_C: angle between quark jets
- Only events with $\psi_A = \psi_C$ are kept

Particle flow asymmetry is observed \rightarrow evidence of string effects
Study of FFs in pythia8+DIRE
Technical details

- Simulate e^+e^- at $Q = 30, 91.2, 1000$ GeV flavor by flavor.
Technical details

- Simulate e^+e^- at $Q = 30, 91.2, 1000$ GeV flavor by flavor

- Fit π and K FFs using pQCD @ NLO

\[
\frac{1}{\sigma_{TOT}} \frac{d\sigma_q^{h\pm}}{dz}(z, Q^2) = \frac{2}{\sigma_{TOT}} \left[C_q \otimes D_q^+(z, Q^2) + C_g \otimes D_g(z, Q^2) \right]
\]
Technical details

- Simulate e^+e^- at $Q = 30, 91.2, 1000$ GeV flavor by flavor

- Fit π and K FFs using pQCD @ NLO

$$\frac{1}{\sigma_{TOT}} \frac{d\sigma_{q}^{h\pm}}{dz}(z, Q^2) = \frac{2}{\sigma_{TOT}} \left[C_q \otimes D_{q^+}(z, Q^2) + C_g \otimes D_{g}(z, Q^2) \right]$$

- ZMVS with input $Q_0 = 11$GeV
Technical details

- Simulate e^+e^- at $Q = 30, 91.2, 1000$ GeV flavor by flavor

- Fit π and K FFs using pQCD @ NLO

\[
\frac{1}{\sigma_{TOT}} \frac{d\sigma^h_{q^\pm}}{dz}(z, Q^2) = \frac{2}{\sigma_{TOT}} \left[C_q \otimes D_q^+(z, Q^2) + C_g \otimes D_g(z, Q^2) \right]
\]

- ZMVS with input $Q_0 = 11$GeV

- Parametrization: $D_{q^+}(z) = N z^\alpha (1 - z)^\beta (1 + c_1 z + c_2 z^2 + ...)$
Pythia8 vs. collinear factorization (preliminary)

\[
\frac{1}{\sigma_{TOT}} \frac{d\sigma}{dz}
\]

\[Q = 11\text{GeV}\]

\[Q = 30\text{GeV}\]

\[Q = 91.2\text{GeV}\]

\[Q = 1000\text{GeV}\]
Pythia8 vs. collinear factorization (preliminary)

\(d^+ \)
\(u^+ \)
\(s^+ \)
\(c^+ \)
\(b^+ \)

\(Q = 11 \text{GeV} \)
\(Q = 30 \text{GeV} \)
\(Q = 91.2 \text{GeV} \)
\(Q = 1000 \text{GeV} \)
Pythia8 + DIRE FFs (preliminary)
Pythia8+DIRE FFs (preliminary)
Pythia8+DIRE π FFs and other global analyses
Pythia8+DIRE K FFs and other global analyses
Pythia8+DIRE vs global $e^+e^- \rightarrow \pi + X$
Pythia8+DIRE vs global $e^+e^- \rightarrow K + X$
Summary of FF studies

- So far...
 - DGLAP formalism seems to work in Pythia8+DIRE from $Q > 30\text{GeV}$
 - Difficulties in describing Pythia8’s sample at $Q = 11\text{GeV}$
 - Extracted FFs are comparable with existing global QCD analyses
 - Pythia8+DIRE seems to describe world e^+e^- data. A new tune with DIRE is needed to achieve better agreement
Summary of FF studies

- So far…
 - DGLAP formalism seems to work in Pythia8+DIRE from $Q > 30\text{GeV}$
 - Difficulties in describing Pythia8’s sample at $Q = 11\text{GeV}$
 - Extracted FFs are comparable with existing global QCD analyses
 - Pythia8+DIRE seems to describe world e^+e^- data. A new tune with DIRE is needed to achieve better agreement

- Further questions
 - Test the role of quark and hadron masses
 - Extract FFs from Pythia8’s SIDIS at low energies
 - Does collinear factorization work in the combined SIDIS+e^+e^-?
 - Can we see the role of string effects?
Summary of FF studies

■ So far...
 ■ DGLAP formalism seems to work in Pythia8+DIRE from $Q > 30\text{GeV}$
 ■ Difficulties in describing Pythia8’s sample at $Q = 11\text{GeV}$
 ■ Extracted FFs are comparable with existing global QCD analyses
 ■ Pythia8+DIRE seems to describe world e^+e^- data. A new tune with DIRE is needed to achieve better agreement

■ Further questions
 ■ Test the role of quark and hadron masses
 ■ Extract FFs from Pythia8’s SIDIS at low energies
 ■ Does collinear factorization work in the combined SIDIS+e^+e^-?
 ■ Can we see the role of string effects?

■ 3D tomography
 ■ Extended the analysis to TMD FFs
 ■ Extract the nonperturbative components of CSS from Pythia8
Summary of FF studies

So far...

- DGLAP formalism seems to work in Pythia8+DIRE from $Q > 30\text{GeV}$
- Difficulties in describing Pythia8’s sample at $Q = 11\text{GeV}$
- Extracted FFs are comparable with existing global QCD analyses
- Pythia8+DIRE seems to describe world e^+e^- data. A new tune with DIRE is needed to achieve better agreement

Further questions

- Test the role of quark and hadron masses
- Extract FFs from Pythia8’s SIDIS at low energies
- Does collinear factorization work in the combined SIDIS+e^+e^-?
- Can we see the role of string effects?

3D tomography

- Extended the analysis to TMD FFs
- Extract the nonperturbative components of CSS from Pythia8

Ongoing studies of SIDIS and MCEG-theory mismatches