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Motivations
Main objectives:

- Urgent requirement: MCEG for TMD physics
- Language dictionary between in NP and HEP
- Improve the theoretical framework for TMDs

Why?
- MCEG is a useful theory tool to describe exclusive final

states
- Is a numerical implementation of QCD evolution and

nonperturbative physics
- Needed for high-presicion nonperturbative physics

What do we need?
- Put a bunch of physicists in a room
- Use Pythia8+DIRE as a starting point
- Use QCD factorization theorems as a guidance
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Progress

Validation of Pythia8+DIRE against HERA data
- Implementation of DIS in pythia8 via DIRE parton shower
- Dedicated comparisons between HERMES tune in pythia6

with against Pythia8

Dedicated study of FFs in pythia (this talk)
- FFs in pythia
- Validation of DGLAP formalism against parton

shower+Lund string model
- Pythia8+DIRE vs world e+e− data

Extensions of the CSS formalism
- Inclusion of string effects in QCD factorization
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Validation of Pythia8+DIRE against HERA data
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Factorization in SIDIS
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Factorization theorem (current fragmentation):
dσ/dφ = H ⊗ f ⊗D
Hadrons can also be produced in the mid rapidity region →
see discussion by J. Collins arXiv:1610.09994
String type effects are potentially important
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String effects: PLB261 (1991) (OPAL Collaboration)
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3 Jets events: QQ̄ and gluon jets. Jets are projected into a plane
ψ: angle of a given particle relative to the quark jet with the highest
energy
ψA: angle between highest energetic jet and gluon jet
ψC : angle between quark jets
Only events with ψA = ψC are kept

Particle flow asymmetry is observed → evidence of string effects
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Study of FFs in
pythia8+DIRE
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Technical details
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Simulate e+e− at Q = 30, 91.2, 1000 GeV flavor by flavor

Fit π and K FFs using pQCD @ NLO

1
σTOT

dσh
±
q

dz
(z,Q2) = 2

σTOT

[
Cq ⊗Dq+(z,Q2) + Cg ⊗Dg(z,Q2)

]

ZMVS with input Q0 = 11GeV

Parametrization: Dq+(z) = Nzα(1− z)β(1 + c1z + c2z
2 + ...)
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Pythia8 vs. collinear factorization (preliminary)
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Pythia8 vs. collinear factorization (preliminary)
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Pythia8+DIRE FFs (preliminary)
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Pythia8+DIRE FFs (preliminary)
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Pythia8+DIRE π FFs and other global analyses
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Pythia8+DIRE K FFs and other global analyses
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Pythia8+DIRE vs global e+e− → π +X
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Pythia8+DIRE vs global e+e− → K +X
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Summary of FF studies
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So far...
DGLAP formalism seems to work in Pythia8+DIRE from Q > 30GeV
Difficulties in describing Pythia8’s sample at Q = 11GeV
Extracted FFs are comparable with existing global QCD analyses
Pythia8+DIRE seems to describe world e+e− data. A new tune with
DIRE is needed achive better agreement

Further questions

Test the role of quark and hadron masses
Extract FFs from Pythia8’s SIDIS at low energies
Does collinear factorization work in the combined SIDIS+e+e− ?
Can we see the role of string effects?

3D tomography

Extended the analysis to TMD FFs
Extract the nonperturbative components of CSS from Pythia8

Ongoing studies of SIDIS and MCEG-theory mismatches
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