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Parton Branching method

1) Introduction to the Parton Branching solution of DGLAP

2) Parton showers with virtuality or angle as an ordering 
variable, discussion about kT distribution of the TMDs

3) NNLO DGLAP evolution performed by Parton Branching 
method

See also the DIS talk by O. Lelek:
Collinear and TMD densities from Parton Branching method
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Motivation

● An analogy to the MC parton 
showers but is used to solve 
evolution equation

● In case of DGLAP equation the 
collinear part exactly reproduce 
semi-analytical solution

● Trace the      of each emissions and 
determine the      part of PDFs

● Study different kinds of branching 
branching dynamics (ordering 
conditions, resolution condition) 
and determine their effect on PDFs

Different flavors have different 
shapes of kT distribution.

And allows:

Parton branching method is:

Similar approaches in:
S. Jadach et al., Comput.Phys.Commun. 181 
(2010) 393.
H. Tanaka, Prog. Theor. Phys., 110:963, 
2003.
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DGLAP splittings decomposition
● The evolution employs momentum weighted densities 

1) Decomposition of the splitting kernels
    (valid at least to NNLO)

Where K and R do not contain any power-like singularities like 1/z or 1/(1-z)

2) Sum rules

Parton Branching solution relays on:
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Sudakov Formalism
● With momentum sum rules and Sudakov, the evolution 

can be written as: 

● Where the Sudakov is:

● The cut-off                determine what is still resolvable branching

● The delta part and +prescription of splittings is outside of the 
integration range (soft emissions resumed by Sudakov)

● This solution is identical to DGLAP as soon as        is large 
enough
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Iterative solution
● Integral form of the evolution equation: 

● Iterative solution:

w/o emissions
between
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Iterative solution
● Integral form of the evolution equation: 

● Iterative solution:

w/o emissions
between

w/o emissions
between

w/o emissions
between

Splitting
probability
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1) Starting with                                                     (for these plots)
2) The position of every next branching (dot) depends only on the previous 

one and is randomly generated using Sudakov and splitting kernels
Higher        cut-off cause more soft emissions (dots with similar x)

Monte Carlo solution

100 LO MC evolution paths from the  point                            plotted
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Resolvable branching dependence
● The parameter        separate resolvable branchings from

non-resolvable and virtual one

● The        affects high-x region, no difference if 
● Momentum sum rules still holds irrespectively on
● Possibility to use               like in showers of MC generators.
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Virtuality and angular ordering

● The Parton Branching method allows to study different parton 
shower ordering conditions
→ the bridge between MC parton showers and PDF fits from 
analytic DGLAP solution

● Virtuality ordering (                 )

● Angular ordering (                )       - relative trans. 
mom. of the 
emission

●      distribution as a probe of the parton 
shower coherence effects presented in 
case of angular ordered shower
(e.g. in Drell-Yan process)
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TMD distributions for various flavors
● At higher scales the quark       significantly smaller than the gluon 

one (quarks radiate less)
● Angular ordering leads to smaller       virtuality ordering

At the starting scale                all flavors has the same Gaussian distribution of   
 with variance 1 GeV2, correct assumption?
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Effect of the intrinsic momentum
● Shown for angular ordering
● At higher scales or higher       the effect of intrinsic momentum 

negligible

At the starting scale                all flavors has the same Gaussian distribution of   
 with variance 1 GeV2, correct assumption?
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Validation of the method against 
QCDnum

● The approach successfully validated at LO and NLO precision by 
comparison to the semi-analytical DGLAP solution

LO evolution NLO evolution

● The uncertainties are the statistical, depending on number of 
“events”                        

QCDnum: M. Botje, Comput.Phys.Commun. 182 (2011) 490
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Extension of the method to NNLO 
evolution

● In NNLO VFNS discontinuities both in       and PDFs

● These discontinuities ensure continuity of observables, e.g.

M. Buza et al., Eur. Phys. J. C1, 301 (1998), hep-ph/9612398
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Extension of the method to NNLO 
evolution

● Sizes of discontinuities
evaluated by convolution-like formulas (here for charm): 

1) Having form of:

2) Preserving sum rules:

1) Incorporate discontinuity kernels into splitting:

2) Use Parton Branching method work-flow
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Extension of the method to NNLO 
evolution

● Consequence: Sudakov factor with steps
● At discontinuities the branchings happen according to        , elsewhere 

by standard  

Sudakov factor for gluon Sudakov factor for quark
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Parton branching evolution method at 
NNLO

● NNLO calculations verified against semi-analytical DGLAP 
evolution (QCDnum), checked with level ~1% accuracy
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Parton branching evolution method at 
NNLO

● The parton branching method with discontinuous Sudakov 
correctly describes all discontinuities emerging with NNLO

Without step-like Sudakov With step-like Sudakov

● Effect of discontinuities most prominent for charm 
distribution at lower scales → discontinuities matter
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Conclusion

● The developed Parton Branching method solves DGLAP 
equation at LO, NLO and NNLO “collinear” accuracy

● Possibility to study effects of different ordering conditions 
and resolution criteria in the shower

● The Parton Branching evolution implemented within xFitter, 
→ first TMDs at LO and NLO obtained form HERA inclusive 
DIS data

● Applications for LHC processes like DY, jets.

More results will follow
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Extension of the method by scale-
dependent resolution parameter

● Automatic sum rules conservation allows to study various definition 
of the resolvable branching  

● In case of                          the evolution in general differs from DGLAP

q-ordering condition Angular ordering condition
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