

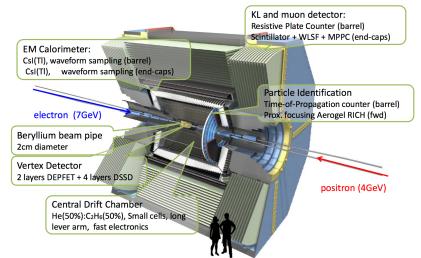
Belle II Early Physics Program of Bottomonia Spectroscopy and Dark Sector Searches

25th International Workshop on Deep Inelastic Scattering and Related Topics — Birmingham, United Kingdom Thomas Hauth for the Belle II Collaboration | 4. April 2017

KARLSRUHE INSTITUTE OF TECHNOLOGY (KIT) - GERMANY

Helmholtz-Gemeinschaft

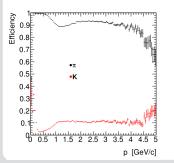
The Belle II Experiment and its Goals



- KEKB was an electron-positron collider at KEK in Tsukuba/Japan which studied the decay of B mesons at the Y(4S) resonance
- Nobel Prize in Physics 2008 to Kobayashi and Maskawa
- The SuperKEKB collider and the Belle II detector will build on the previous success:
 - Study the B meson system in far greater precision
 - Probe for new physics in a wide range of interesting topologies
 - Spectroscopy of Quarkonium systems
- The Belle II Collaboration: 681 scientists from 100 institutes in 23 countries

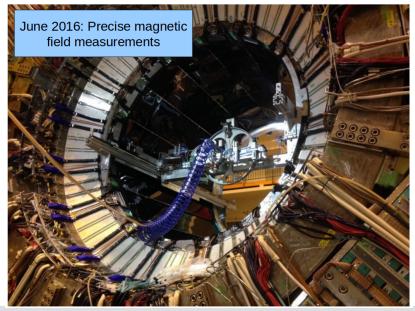
	KEKB	Super KEKB	Factor
Instantaneous Luminosity	$2 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$	$8 \times 10^{35} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	40
Integrated Luminosity	1 ab ⁻¹	50 ab ⁻¹	50
Runtime	1998 to 2010	start in 2017	
Detector	Belle	Belle II	
Raw Data	1 PB	100 PB (projected)	100

Belle II Detector



Highlights of the Belle II Design

Completely new VerteX Detector (VXD):


- Two inner DEPFET Pixel Layer (PiXel Detector) : PXD
- Four outer Silicon Strip Layers (Silicon Vertex Detector) : SVD
- Very light mechanical structure: $X/X_0 \approx 0.5\%$ per SVD layer, $X/X_0 \approx 0.19\%$ per PXD layer
- Factor 1.5 improvement of the impact parameter over a wide range with the new inner tracking system (compared to Belle)

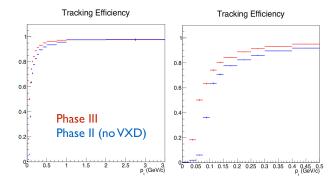
- Improved Central Drift Chamber which builds on Belle's established design: Denser inner layer and larger radius for better momentum reconstruction
- New Time-of-Flight (TOP), Aerogel-RICH detectors and drift chamber dE/dX for particle identification
- Upgrade to the hardware Level-1 trigger to support triggers for low-multiplicity events

Members of the Collaboration in front of the Belle II Detector

11. April LIVE CAST: Roll-in of Belle 2 Detector

Link to livecast: https://t.co/7k54fKQMYV https://www.belle2.org https://twitter.com/belle2collab https://www.facebook.com/belle2collab

Belle II Commissioning and Early Physics Opportunities



- BEAST Phase I completed Feb-June 2016: SuperKEKB commissioning with the BEAST detector to characterize the beam environment
- Phase II End of 2017 / early 2018:
 - Roll-in of Belle II detector: 11. April 2017
 - Belle II without the inner silicon-based VXD tracking system
 - Commissioning of damping ring and first e⁺e⁻ collisions
 - Characterize background radiation innermost tracking system is exposed to
 - Estimated duration \sim 5 month and recording of 20 40 fb $^{-1}$ at various energies
 - First months will be commissioning data to test the sub-detectors and to study the machine background
- Phase III End of 2018/Beginning 2019:
 - Start of data taking with the complete Belle II detector
 - Primary running at $\Upsilon(4S)$ for B-pair production

Detector and Reconstruction Performance

Phase II

- Due to missing VXD system: degraded tracking efficiency and resolution, especially for particles < 500 MeV
- The CDC tracking system will be fully installed and provide sufficient hits for high-pt tracks
- Particle identification systems and ECL are not affected by the missing VXD system

Quarkonium Spectroscopy at B-Factories

- The B-Factories Belle and BaBar made important contributions to better understand the spectrum of Charmonium and Bottomonium
- Unexpected findings by the B-factories were the observation of many Quarkonium-like states
- Belle in 2003: discovery of the exotic Charmonium state X(3872)¹
- Since then, many other experiments have confirmed the discovery
- In 2013, LHCb determined the quantum numbers of X(3872)²

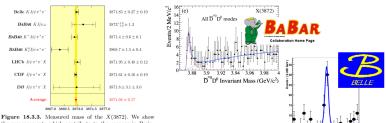
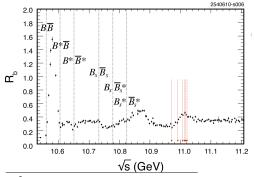


Figure 18.3.3. Measured mass of the X(3872). We show the measurements which contribute to the average in Beringer et al. (2012).

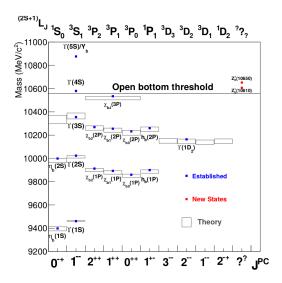
1 https://arxiv.org/abs/hep-ex/0308029 2 https://arxiv.org/abs/1302.6269


Thomas Hauth - Belle II Early Physics Program of Bottomonia Spectroscopy and Dark Sector Searches

3.86 3.88 3.9 3

Existing Υ -related Datasets

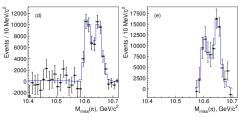
Experiment	Scans	$\Upsilon(6S)$	$\Upsilon(5S)$		$\Upsilon(4S)$		$\Upsilon(3S)$		$\Upsilon(2S)$		$\Upsilon(1S)$	
	Off. Res.	fb^{-1}	$\rm fb^{-1}$	10^{6}								
CLEO	17.1	-	0.1	0.4	16	17.1	1.2	5	1.2	10	1.2	21
BaBar	54	R	$_b$ scan		433	471	30	122	14	99	-	
Belle	100	~ 5.5	36	121	711	772	3	12	25	158	6	102



Belle took 5.5 fb⁻¹ data at 6 different energies on and around the $\Upsilon(6S)$ resonance energy.

³from B2Tip report, to be published https://confluence.desy.de/display/BI/B2TiP+WebHome

Bottomonium States

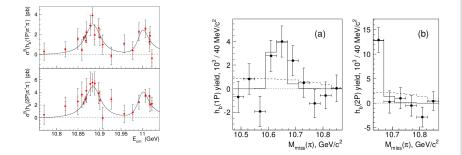


Belle's Z_b discovery at Y(5S)

- Belle observed higher then expected rates⁴ for the transition $\Upsilon(5S) \rightarrow h_b(nP)\pi^+\pi^-$
- The rates are unsuppressed relative to Υ(5S) → Υ(nS)π⁺π[−](n = 1, 2, 3), even though it should be suppressed due to the spin-flip of one of the b
- Analysis of the decay revealed two new charged, and therefore exotic, states Z_b(10610) and Z_b(10650)
- The neutral partner $Z_b^0(10610)$ was discovered in the transition $\Upsilon(5S) o h_b(nP) \pi^0 \pi^0$
- Multiple explanations for the exotic Z_b states exist, for example a molecular nature of the state of at least four quarks

State	Mass	Width	Reference	
	(MeV/c^2)	(MeV/c^2)		
$Z_b^{\pm}(10610)$	10607.2 ± 2.0	18.4 ± 2.4	67	
$Z_b^{\pm}(10650)$	10652.2 ± 1.5	11.5 ± 2.2	67	
$Z_b^0(10610)$	$10609 \pm 4 \pm 4$	_	69	

https://arxiv.org/abs/1110.2251


Thomas Hauth - Belle II Early Physics Program of Bottomonia Spectroscopy and Dark Sector Searches

14/21

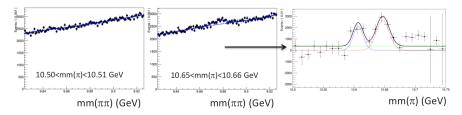
Belle's Indications for $\Upsilon(6S) \rightarrow Z_b$

Preliminary evidence at Belle, but not sufficient statistics to clearly separate Z_b contributions⁵

⁵https://arxiv.org/abs/1508.06562

Analysis Technique for $\Upsilon(\rho S) \to Z_b$ transitions

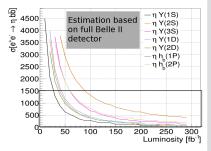
- Consider one of the Golden Modes: $\Upsilon(6S) \rightarrow \pi Z_b(\pi h_b(nP))$
- The missing mass can be computed for the two pion system $M_{miss}(\pi\pi) = \sqrt{(E_{c.m.} - E_{\pi\pi})^2 - p_{\pi\pi}^2}$ and for each pion individually $M_{miss}(\pi) = \sqrt{(E_{c.m.} - E_{\pi})^2 - p_{\pi}^2}$
- One of the pion's missing mass must be within 10.55 GeV $< M_{miss}(\pi) <$ 10.70 GeV to select the pion created in the $\Upsilon(6S) \rightarrow \pi Z_b$ transition
 - The missing mass of this pion can be used to deduce the Z_b properties
- Additional requirements to suppress background:
 - High Particle ID confidence for pion hypothesis
 - Pions originated at the interaction point of Belle II
- Fitting the $M_{miss}(\pi)$ distribution with Gaussian plus 4th order Chebyshev polynomial


Belle II's $\Upsilon(6\mathcal{S})$ measurements in Phase II

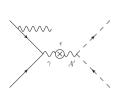
- \blacksquare May take $\sim 20-40\,\text{fb}^{-1}$ during the Phase II data taking and $\sim 10\,\text{fb}^{-1}$ at $\Upsilon(6S)$ resonance energy
- Using the Golden Modes:

•
$$\Upsilon(6S) \rightarrow \pi Z_b(\pi h_b(nP))$$

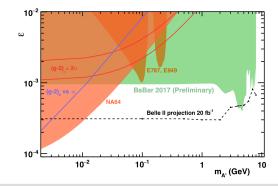
- $\Upsilon(6S) \rightarrow \pi Z_b(\pi \Upsilon(pS)(l^+l^-))$
- Monte-Carlo studies show that a good separation is possible with 10 fb⁻¹ of data



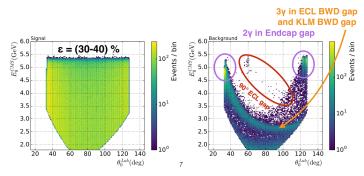
More with $\Upsilon(6S)$: η Transitions


- The $\Upsilon(6S) \to \eta$ transition can be used to access (missing) states below the open beauty threshold
- Interesting to measure, because η transitions are always violating the Heavy Quark Spin Symmetry \rightarrow comparison with QCD multipole expansion computations
- \blacksquare Based on Y(5S) experience, it is reasonable to expect a cross section < 1500 fb

Search for missing conventional bottomonia below BB threshold							
Name	L	S	J^{PC}	Mass, MeV/c^2	Emitted hadrons [Threshold, GeV/c^2]		
$\eta_b(3S)$	0	0	0^{-+}	10336	ω [11.12], ϕ [11.36]		
$h_b(3P)$	1	0	1+-	10541	$\pi^{+}\pi^{-}$ [10.82], η [11.09], η' [11.50]		
$\eta_{b2}(1D)$	2	0	2^{-+}	10148	ω [10.93], ϕ [11.17]		
$\eta_{b2}(2D)$	2	0	2^{-+}	10450	ω [11.23], ϕ [11.47]		
$\Upsilon_J(2D)$	2	1	$(1, 2, 3)^{}$	10441 - 10455	$\pi^{+}\pi^{-}$ [10.73], η [11.00] η' [11.41]		
$h_{b3}(1F)$	3	0	3+-	10355	$\pi^+\pi^-$ [10.63], η [10.90] η' [11.31]		
$\chi_{bJ}(1F)$	3	1	$(2, 3, 4)^{++}$	10350 - 10358	ω [11.14], ϕ [11.38]		
$\eta_{b4}(1G)$	4	0	4 ⁻⁺	10530	ω [11.31], ϕ [11.55]		
$\Upsilon_J(1G)$	4	1	$(3, 4, 5)^{}$	10529 - 10532	$\pi^{+}\pi^{-}$ [10.81], η [11.08], η' [11.49]		



Dark Photon Search


- Hypothetical dark photon (A') production in e⁺e⁻ annihilation
- With 20 fb⁻¹ of recorded events, a preliminary projection shows a big exclusion potential for Belle II's early data taking
- BaBar recently published a dark photon search with 53 fb⁻¹ https://arxiv.org/abs/1702.03327

Belle II's Dark Photon Search in Phase II

- Very challenging experimental signature: A'(invisible) and one γ
- Special single photon trigger required:
 - Cascaded: different pre-scales for different thresholds
 - Different pre-scales for Barrel and Endcap regions
- Irreducible dominant background $ee \rightarrow ee\gamma$ where both electrons are outside of the detector acceptance
- Good tracking efficiency required to reject events with tracks
- Using KLM cluster information to reject events falling into ECL gaps

- Belle II's Phase II commissioning run can already provide important contributions to our understanding of the Bottomonium system and in dark sector searches
- The goal is to record 20 − 40 fb⁻¹ at various energies and at least 10 fb⁻¹ at the \Upsilon(6S) energy
- If accelerator and detector perform as expected: Almost double the $\Upsilon(6S)$ data set of Belle and allow to probe the $\Upsilon(6S) \rightarrow Z_b$ transition
- New single photon trigger for dark photon searches can be commissioned and the triggered events used for searches in this area