Searches for Sterile Neutrinos at Future electron-proton Colliders

Oliver Fischer

University of Basel, Switzerland

April the 5th 2017, Birmingham

Based on S. Antusch, E. Cazzato, OF, 1612.02728

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Motivation for sterile neutrinos

- Neutrino oscillations are evidence for new physics.
 - \Rightarrow At least two light neutrinos are massive.
- Sterile neutrinos for type I seesaw mechanism.

Oliver Fischer

э

A D A D A D A

The Seesaw Mechanism

- Naïve $(1 \nu_L, 1 \nu_R)$ version: $m_{\nu} = \frac{1}{2} \frac{v_{\rm EW}^2 |y_{\nu}|^2}{M_R}$
- More realistic example, the $(2 \nu_L, 2 \nu_R)$ version:

$$egin{aligned} Y_
u &= egin{pmatrix} \mathcal{O}(y_
u) & 0 \ 0 & \mathcal{O}(y_
u) \end{pmatrix}, & M_N &= egin{pmatrix} M_R & 0 \ 0 & M_R(1+arepsilon) \end{pmatrix} \ &\Rightarrow m_{
u_i} &= rac{v_{ ext{EW}}^2 \mathcal{O}(y_
u^2)}{M_R}(1+arepsilon) \end{aligned}$$

 \Rightarrow Knowledge of m_{ν_i} implies a relation between y_{ν} and M_R .

Oliver Fischer

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ = のQ⊙

Lowscale Seesaw

- Specific structures of the Yukawa and mass matrices can be realised by symmetries (no fine tuning).
- A (2 ν_L , 2 ν_R) example:

$$egin{aligned} Y_{
u} &= egin{pmatrix} \mathcal{O}(y_{
u}) & 0 \ \mathcal{O}(y_{
u}) & 0 \end{pmatrix}, & egin{pmatrix} 0 & M_R \ M_R & arepsilon \end{pmatrix} \ &\Rightarrow m_{
u_i} &= 0 + arepsilon rac{v_{ ext{EW}}^2 \mathcal{O}(y_{
u}^2)}{M_R^2} \end{aligned}$$

⇒ In general: no fixed relation between y_{ν} and M_R . ⇒ Large y_{ν} are compatible with neutrino oscillations.

Oliver Fischer

The Big Picture

Searches for Sterile Neutrinos at Future ep Colliders 4 / 17

▲ 同 ▶ → 三 ▶

표 문 문

Sterile neutrinos: attractive BSM features

Baryon asymmetry:

- Oscillations between sterile and active neutrinos
- Novel Higgs-decay mechanism

Hambye, Teresi; PRL 117 (2016)

Dark Matter:

- DM stability from lepton symmetry
- Freeze-in mechanism
- Testable LFV signatures

Heurtier, Teresi; Phys. Rev. D 94 (2016) no.12, 125022

(日) (同) (三) (三)

Oliver Fischer

Searches for Sterile Neutrinos at Future ep Colliders 5 / 17

Present indirect constraints from precision data

- Analysis of non-unitarity of the PMNS matrix.
- 34 precision observables: Electroweak Precision Observables (EWPO), lepton universality, charged lepton flavour violation, CKM unitarity
- Highest posterior density intervals at 90% Bayesian C.L.:

-0.0021	$\leq \varepsilon_{ee} \leq$	-0.0002	$ \varepsilon_{e\mu} $	<	$1.0 imes10^{-5}$
-0.0004	$\leq \varepsilon_{\mu\mu} \leq$	0	$ \varepsilon_{e\tau} $	<	$2.1 imes10^{-3}$
-0.0053	$\leq \varepsilon_{\tau\tau} \leq$	0	$ \varepsilon_{\mu\tau} $	<	$8.0 imes10^{-4}$

Antusch, OF; JHEP 1410 (2014) 094

- * Non-unitarity parameters: $\varepsilon_{\alpha\alpha} = -\theta_{\alpha}^*\theta_{\alpha}$.
- * Weak statistical preference for non-zero mixing for ε_{ee} .

Oliver Fischer

・ロト・4回ト・4回ト・回・うへの

Present constraints including direct searches

► Z pole search: limits from Z branching ratios .

Abreu et al. Z.Phys. C74 (1997) 57-71

- Higgs decays: Best constraints from $h \rightarrow \gamma \gamma$.
- Direct Search: $\delta \sigma_{SM}^{WW} = 0.011_{stat} + 0.007_{syst}$

OPAL collaboration, Abbiendi et al. (2007)

Oliver Fischer

三 うくい

Heavy neutrino production at electron-proton colliders

- Leading order production of heavy neutrino mass eigenstate.
- ► W_t^(q): dominant at lower center-of-mass energies.
- $W_t^{(\gamma)}$: relevant for larger masses.

Production cross sections

For 60 GeV as benchmark for the electron beam E_e :

- $\sigma_{\nu N}$ increase of ~ 30% for $E_e \rightarrow 100$ GeV.
- Increased by $\sim 80\%$ when including polarisation.
- ► Consider 1 ab⁻¹ (for FCC-eh and LHeC).

Oliver Fischer

(人間) トイヨト イヨト

Signal channels from $\mathbf{W}_{t}^{(q)}$

Name	Final State	$ heta_{lpha} $ Dependency	LFV
lepton-trijet	jjj ℓ_{lpha}^-	$\frac{ \theta_e \theta_\alpha ^2}{\theta^2}$	\checkmark
jet-dilepton	$j\ell_{lpha}^{-}\ell_{eta}^{+} u$	$\frac{ \theta_e \theta_\alpha ^2}{\theta^2}^{(*)}$	\checkmark
trijet	jjj $ u$	$ \theta_e ^2$	×
monojet	jννν	$ \theta_e ^2$	×

- LFV (and LNV) signature for $\alpha \neq e, \beta \neq \alpha$, and $\gamma \neq \alpha, \beta$
- Unambiguous lepton-number-violating final states, e.g. e⁺jjj.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □□ のへで

Signal channels from $\mathbf{W}_t^{(\gamma)}$

Name	Final State	$ heta_{lpha} $ Dependency	LFV
lepton-quadrijet	$jjjj\ell_{lpha}^{-}$	$\frac{ \theta_e \theta_\alpha ^2}{\theta^2}$	\checkmark
dilepton-dijet	$\ell_{lpha}^-\ell_{eta}^+ u jj$	$\frac{ \theta_e\theta_\alpha ^2}{\theta^2}^{(*)}$	\checkmark
trilepton	$\ell_{lpha}^-\ell_{eta}^-\ell_{\gamma}^+ u u$	$\frac{ \theta_e \theta_\alpha ^2}{\theta^2}^{(*)}$	\checkmark
quadrijet	jjjj <i>v</i>	$ \theta_e ^2$	×
electron-di-b-jet	e ⁻ b̄bνν	$ \theta_e ^2$	×
dijet	jjννν	$ \theta_e ^2$	×
monolepton	$\ell_{\alpha}^{-}\nu\nu\nu\nu$	$ \theta_e ^2$	×

- Additional signatures of LFV/LNV.
- Cross section suppressed by the small PDF of the photon.
- More efficient at higher center-of-mass energies.

Oliver Fischer

Caveat:

- ★ For the following "first look" we confined ourselves to the parton level.
- \star The analysis on the reconstructed level is about to begin.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

First look: lepton-flavour-conserving signatures

- Sensitive to $|\theta_e|$ or $|\theta_e| \times Br(N \to e^- W^+)$.
- Here: "Conservative" sensitivity for $|\theta_{\alpha}| \ll |\theta_{e}|$.
- For $|\theta_{\alpha}| \sim |\theta_{e}|$ LFV is expected.

Oliver Fischer

通 ト イヨ ト イヨト

Lepton-flavour-violating signatures

- Very sensitive tests of combinations $|\theta_e \theta_\alpha|$.
- ► Upper bounds: $|\theta_e \theta_\mu|$ from $\mu \to e\gamma$ (MEG); $|\theta_e \theta_\tau|$ from precision data.
- Requires $|\theta_{\alpha}| \stackrel{>}{\sim} |\theta_{e}|$ for sizeable branching ratios.

Oliver Fischer

Synergy and Complementarity with other colliders

Searches for Sterile Neutrinos at Future ep Colliders 14 / 17

E 990

Conclusions

- Sterile neutrinos are well motivated extensions of the SM.
- Symmetry protected seesaw scenarios allow for electroweak scale sterile neutrino masses and O(1) active-sterile mixings.
- Present constraints: active-sterile mixing $|\theta|^2 \le 10^{-3}$.
- Electron-proton colliders produce heavy neutrinos via $|\theta_e|$.
- Most sensitive searches for sterile neutrinos with masses
 - below m_W via displaced vertices (not discussed here)
 - above $\mathcal{O}(100)$ GeV via lepton-flavour violating signatures.
- Lepton-number violating signatures not expected.
- ⇒ Direct searches for sterile neutrinos at *ep* colliders have great prospects at testing sterile neutrinos with masses up to 3 TeV!

Thank you for your attention.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Backup I - EWPO

Experimental results and SM predictions for the EWPO, and the modification^{*}, to first order in the "non-unitarity" parameters $\varepsilon_{\alpha\alpha} = \theta_{\alpha}^* \theta_{\beta}$. (formulae for $M \gg m_Z$)

Prediction in MUV	SM Prediction	Experiment
$\left[R_\ell ight]_{ m SM} \left(1 - 0.15 (arepsilon_{ee} + arepsilon_{\mu\mu}) ight)$	20.744(11)	20.767(25)
$\left[R_b ight]_{ m SM} \left(1 + 0.03 (arepsilon_{ee} + arepsilon_{\mu\mu}) ight)$	0.21577(4)	0.21629(66)
$\left[R_{c}\right]_{\mathrm{SM}}\left(1-0.06(arepsilon_{ee}+arepsilon_{\mu\mu}) ight)$	0.17226(6)	0.1721(30)
$\left[\sigma_{had}^{0}\right]_{\rm SM} (1 - 0.25(\varepsilon_{ee} + \varepsilon_{\mu\mu}) - 0.27\varepsilon_{\tau})/{\rm nb}$	41.470(15)	41.541(37)
$\left[R_{inv}\right]_{ m SM}(1+0.75(arepsilon_{ee}+arepsilon_{\mu\mu})+0.67arepsilon_{ au})$	5.9723(10)	5.942(16)
$[M_W]_{ m SM}(1-0.11(arepsilon_{ee}+arepsilon_{\mu\mu}))/{ m GeV}$	80.359(11)	80.385(15)
$[\Gamma_{ m lept}]_{ m SM}(1-0.59(arepsilon_{ee}+arepsilon_{\mu\mu}))/{ m MeV}$	83.966(12)	83.984(86)
$[(s_{W,\mathrm{eff}}^{\ell,\mathrm{lep}})^2]_\mathrm{SM}(1+0.71(arepsilon_{ee}+arepsilon_{\mu\mu}))$	0.23150(1)	0.23113(21)
$[(s_{W,\mathrm{eff}}^{\ell,\mathrm{had}})^2]_\mathrm{SM}(1+0.71(arepsilon_{ee}+arepsilon_{\mu\mu}))$	0.23150(1)	0.23222(27)

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

* Minimal Unitarity Violation scheme: Antusch et al.; JHEP 0610 (2006) 084.

Backup II - lepton universality

Modification due to sterile neutrinos (formulae for $M \gg m_Z$):

$${\it R}_{lphaeta} = \sqrt{rac{(NN^{\dagger})_{lphalpha}}{(NN^{\dagger})_{etaeta}}} \simeq 1 + rac{1}{2} \left(arepsilon_{lphalpha} - arepsilon_{etaeta}
ight) \,.$$

	Process	Bound		Process	Bound
$R^\ell_{\mu e}$	$\frac{\Gamma(\tau \to \nu_\tau \mu \bar{\nu}_\mu)}{\Gamma(\tau \to \nu_\tau e \bar{\nu}_e)}$	1.0018(14)	$R^{\pi}_{\mu e}$	$\left \begin{array}{c} \frac{\Gamma(\pi \to \mu \bar{\nu}_{\mu})}{\Gamma(\pi \to e \bar{\nu}_{e})} \end{array} \right $	1.0021(16)
$R^\ell_{ au\mu}$	$\frac{\Gamma(\tau \to \nu_{\tau} e \bar{\nu}_{e})}{\Gamma(\mu \to \nu_{\mu} e \bar{\nu}_{e})}$	1.0006(21)	$R^{\pi}_{ au\mu}$	$\frac{\Gamma(\tau \to \nu_\tau \pi)}{\Gamma(\pi \to \mu \bar{\nu}_\mu)}$	0.9956(31)
$R^W_{e\mu}$	$rac{\Gamma(W ightarrow e ar{ u}_e)}{\Gamma(W ightarrow \mu ar{ u}_\mu)}$	1.0085(93)	$R^{K}_{ au\mu}$	$egin{array}{l} \Gamma(au o K u_ au) \ \overline{\Gamma(K o \mu ar{ u}_\mu)} \end{array}$	0.9852(72)
$R^W_{ au\mu}$	$\frac{\Gamma(W \to \tau \bar{\nu}_{\tau})}{\Gamma(W \to \mu \bar{\nu}_{e})}$	1.032(11)	$R_{ au e}^K$	$\left \begin{array}{c} \Gamma(au o K u_ au) \ \overline{\Gamma(K o e ar{ u}_e)} \end{array} ight $	1.018(42)

Backup III - CKM unitarity constraint

Current world averages: $V_{ud} = 0.97427(15)$, $V_{ub} = 0.00351(15)$

$$\begin{split} |V_{ij}^{th}|^2 &= |V_{ij}^{exp}|^2 (1 + f^{\text{process}}(\varepsilon_{\alpha\alpha})) ,\\ |V_{ud}^{th}|^2 &= |V_{ud}^{exp,\beta}|^2 (NN^{\dagger})_{\mu\mu} .\\ \text{For the kaon decay processes we have:} \\ |V_{us}^{th}|^2 &= |V_{us}^{exp,K \to \mu}|^2 (NN^{\dagger})_{\mu\mu} ,\\ |V_{us}^{th}|^2 &= |V_{us}^{exp,K \to \mu}|^2 (NN^{\dagger})_{ee} . \end{split}$$

Process	$V_{us}f_+(0)$	
$K_L ightarrow \pi e \nu$	0.2163(6)	
$K_L ightarrow \pi \mu u$	0.2166(6)	
$K_S ightarrow \pi e u$	0.2155(13)	
$K^\pm o \pi e u$	0.2160(11)	
$K^{\pm} ightarrow \pi \mu u$	0.2158(14)	
Average	0.2163(5)	

Processes involving tau leptons:

Process	$f^{ m process}(arepsilon)$	$ V_{us} $
$\frac{B(\tau \rightarrow K \nu)}{B(\tau \rightarrow \pi \nu)}$	$arepsilon_{\mu\mu}$	0.2262(13)
$ au ightarrow K \nu$	$\varepsilon_{ee} + \varepsilon_{\mu\mu} - \varepsilon_{\tau\tau}$	0.2214(22)
$\tau \to \ell, \tau \to s$	$0.2arepsilon_{ee} - 0.9arepsilon_{\mu\mu} - 0.2arepsilon_{ au au}$	0.2173(22)

Backup IV - lepton flavour violation

Process	MUV Prediction	Bound	Constraint on $ \varepsilon_{\alpha\beta} $
$\mu ightarrow e\gamma$	$2.4 imes10^{-3}arepsilon_{\mu e}arepsilon^2$	5.7×10^{-13}	$arepsilon_{\mu e} < 1.5 imes 10^{-5}$
$ au ightarrow {\it e} \gamma$	$4.3 imes 10^{-4} arepsilon_{ au e} ^2$	$1.5 imes 10^{-8}$	$arepsilon_{ au e} < 5.9 imes 10^{-3}$
$\tau \to \mu \gamma$	$4.1 imes 10^{-4}arepsilon_{ au\mu}arepsilon^2$	1.8×10^{-8}	$arepsilon_{ au\mu} < 6.6 imes 10^{-3}$

Estimated sensitivities of planned experiments at 90% C.L.:

Process	MUV Prediction	Bound	Sensitivity
$Br_{ au e}$	$4.3 imes10^{-4}arepsilon_{ au e}arepsilon^2$	10 ⁻⁹	$arepsilon_{ au e} \geq 1.5 imes 10^{-3}$
$Br_{ au\mu}$	$4.1 imes10^{-4}arepsilon_{ au\mu}arepsilon^2$	10^{-9}	$arepsilon_{ au\mu} \geq 1.6 imes 10^{-3}$
$Br_{\mu eee}$	$1.8 imes10^{-5} arepsilon_{\mu e} ^2$	10^{-16}	$\varepsilon_{\mu e} \geq 2.4 imes 10^{-6}$
$R_{\mu e}^{Ti}$	$1.5 imes 10^{-5}ertarepsilon_{\mu e}ert^2$	$2 imes 10^{-18}$	$arepsilon_{\mu e} \geq 3.6 imes 10^{-7}$

 $\Rightarrow R_{\mu e}^{Ti}$ yields a sensitivity to m_{ν_R} up to 0.3 PeV.

Backup V - Symmetry Protected Seesaw Scenario

Benchmark model, defined in Antusch, OF; JHEP 1505 (2015) 053

 Collider phenomenology dominated by two sterile neutrinos N_i with protective symmetry, such that

$$\mathscr{L}_{N} = -\frac{1}{2}\overline{N_{R}^{1}}M(N_{R}^{2})^{c} - y_{\nu_{\alpha}}\overline{N_{R}^{1}}\widetilde{\phi}^{\dagger}L^{\alpha} + \mathrm{H.c.}$$

Further "decoupled" sterile neutrinos may exist.

Active-sterile mixing parameters:

$$heta_{lpha} = y_{
u_{lpha}} rac{
u_{
m EW}}{\sqrt{2}}, \, heta^2 \equiv \sum_{lpha} | heta_{lpha}|^2$$

• The leptonic mixing matrix to leading order in θ_{α} :

$$\mathcal{U} = \begin{pmatrix} \mathcal{N}_{e1} & \mathcal{N}_{e2} & \mathcal{N}_{e3} & -\frac{\mathrm{i}}{\sqrt{2}}\theta_{e} & \frac{1}{\sqrt{2}}\theta_{e} \\ \mathcal{N}_{\mu1} & \mathcal{N}_{\mu2} & \mathcal{N}_{\mu3} & -\frac{\mathrm{i}}{\sqrt{2}}\theta_{\mu} & \frac{1}{\sqrt{2}}\theta_{\mu} \\ \mathcal{N}_{\tau1} & \mathcal{N}_{\tau2} & \mathcal{N}_{\tau3} & -\frac{\mathrm{i}}{\sqrt{2}}\theta_{\tau} & \frac{1}{\sqrt{2}}\theta_{\tau} \\ 0 & 0 & 0 & \frac{\mathrm{i}}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\theta_{e}^{*} & -\theta_{\mu}^{*} & -\theta_{\tau}^{*} & -\frac{\mathrm{i}}{\sqrt{2}}\left(1 - \frac{\theta^{2}}{2}\right) & \frac{1}{\sqrt{2}}\left(1 - \frac{\theta^{2}}{2}\right) \end{pmatrix}$$

Oliver Fischer

Searches for Sterile Neutrinos at Future ep Colliders

16 / 17

Backup VI - Heavy neutrino interactions

Charged current (CC):

$$j_{\mu}^{\pm} = \frac{g}{2} \,\theta_{\alpha} \,\bar{\ell}_{\alpha} \,\gamma_{\mu} \left(-\mathrm{i} N_{1} + N_{2}\right)$$

Neutral current (NC):

$$j_{\mu}^{0} = \frac{g}{2 c_{W}} \left[\theta^{2} \bar{N}_{2} \gamma_{\mu} N_{2} + (\bar{\nu}_{i} \gamma_{\mu} \xi_{\alpha 1} N_{1} + \bar{\nu}_{i} \gamma_{\mu} \xi_{\alpha 2} N_{2} + \text{H.c}) \right]$$

Higgs boson Yukawa interaction:

$$\mathscr{L}_{\text{Yukawa}} = \sum_{i=1}^{3} \xi_{\alpha 2} \frac{\sqrt{2} M}{v_{\text{EW}}} \nu_{i} \phi^{0} \left(\overline{N}_{1} + \overline{N}_{2} \right)$$

• With the mixing parameters: $\xi_{\alpha 1} = (-i) \mathcal{N}^*_{\alpha \beta} \frac{\theta_{\beta}}{\sqrt{2}}, \ \xi_{\alpha 2} = i \xi_{\alpha 1}$

Oliver Fischer

Searches for Sterile Neutrinos at Future ep Colliders 17 / 17

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

ILC direct searches

• Operation scenario G-20, with 4 ab^{-1} at $\sqrt{s} = 500$ GeV.

(日) (四) (三) (三) (三)

æ

- Using 1 ab⁻¹ at $\sqrt{s} = 1.0$ TeV.
- Displaced vertex searches possible for $M < m_W$.