

Determining Large x PDFs at JLEIC – a work in progress 12

HERA inclusive **DIS**

HERA DIS

10*

Exp. Uncert

Mod. Uncert

10

CMS Preliminary

10-3

3.0

2.5

~ 2.0

(0'x)fx

0.5

0.0

0.2

0.0

10-

ract. Uncert.

 $s/s_{
m CJ15}$

 10^{-3} 10^{-2}

0.1

x

0.2

0.3 0.4

CJ15 (T = 10)

1.6

 $\begin{array}{c} 1.3 \\ 1.2 \\ 1.1 \\ 1.0 \\ 0.9 \\ 0.8 \\ 0.7 \\ 10^{-4} 10^{-3} 10^{-2} 0.1 0.2 0.3 0.4 \\ x \end{array}$

DIS 2017 Birmingham, UK, April 2017

A. Accardi (Hampton),

R. Ent, J. Furletova,

C. Keppel, K. Park,

R. Yoshida (JLab),

M. Wing (UC London)

Motivation

- In general, DIS experiments provides the best systematic control for PDF measurements.
- High-x (>0.1) PDFs are of interest to LHC (and HL-LHC) program for searches for new physics.
- Medium-x (0.01 to 0.001), possibly for Higgs couplings.
- Jefferson Lab 12 GeV program measures high-x at Q² up to ~10 GeV². Measurements ranging to high (up to a few 1000 GeV²) will enable studies of target mass, higher twist, pert/nonpert. studies)

Jefferson Lab

Motivation II

- HERA measurements at high-x tends to be statistics limited—high-x, generally means high-Q² (more on this later).
- Other measurements are either
 - At hadron-hadron machines with, in general, larger systematic uncertainties (Tevatron, LHC itself)
 - Fixed target experiments at lower Q² and/or have target corrections leading to uncertainties when used in QCD fits.
- The proposed Electron Ion Collider is kinematically between HERA and fixed-target.
 - Measure at perturbative Q² values and on proton target.
- EIC and HL-LHC will run concurrently (according to current projections).

Large x (x > 0.05) -> Large PDF Uncertainties

g(x) is poorly known at large (and small) x...

Nucleon Structure Function Measurements

Proton –

- F_2^p measured over > 5 orders of magnitude in x, Q^2 by dozens of experiments at numerous laboratories and for decades
- Well described by DGLAP, global PDF fits
- Translates to small uncertainties on u(x)

Neutron –

- No free neutron target
- Historically difficult to extract neutron from deuteron uncertainties from nuclear corrections
- F_2^d not as well measured as F_2^p
- Translates to large uncertainties on d(x)

HERA and other measurements.

The Electron Ion Collider

For e-N collisions at the EIC:

- ✓ Polarized beams: e, p, d/³He
- ✓ e beam 3-10(20) GeV
- ✓ Luminosity L_{ep} ~ 10³³⁻³⁴ cm⁻²sec⁻¹ 100-1000 times HERA
 ✓ 20-~100 (~140) GeV Variable CoM

For e-A collisions at the EIC:

- ✓ Wide range in nuclei
- Luminosity per nucleon same as e-p
- ✓ Variable center of mass energy

World's first

Polarized electron-proton/light ion and electron-Nucleus collider

Two proposals for realization of the science case both designs use DOE's significant investments in infrastructure

US-Based EIC Proposals

EIC measurement region

• To begin investigating possibilities, we used projected data kinematics and uncertainties, and the "CJ" global PDF fit...

Can EIC do better than HERA at high-x?

There are several advantages:

- Much higher luminosity (2 to 3 orders of magnitude)
- Run deuterons (measure neutrons)
- Access to lower angle jets. (large crossing angle for the beams)—see
 Rolf Ent's talk WG7 Wed. 16:00
- Better flavor tagging.

Also at least one disadvantage:

• Lower energies mean lower energy jets—worse calorimetric resolution.

(at high-x, Q²~10 GeV²: essentially x is measured by jet energy)

CTEQ-Jefferson Lab "CJ" PDF Fits

Phys. Rev. D81:034016 (2010) Phys. Rev. D87:094012 (2013) Phys. Rev. D84:014008 (2011) Phys. Rev. D93 114017 (2016)

PDFs at http://lhapdf.hepforge.org/lhapdf5/pdfsets

CJ collaboration: http://www.jlab.org/CJ

Goals:

- Extend CTEQ fit to larger values of x and lower values of Q^2
- Incorporate data previously subject to kinematic cuts (SLAC and JLab largely)

To accomplish this:

- Need to relax conventional cuts defining "safe" region for issues such as higher twist, target mass will now need to take these into account
- Allow d/u to go to a constant (not just $(1-x)^a$ type form)
- *Need accurate deuteron nuclear corrections*

CJ15 Global Fit

Phys. Rev. D93 114017 (2016)

State-of-the-art in large x PDFs

- > 50% uncertainty on d(x) above x ~ 0.6
- > 50% uncertainty on g(x) above x ~ 0.2

Data so far being considered in CJ fit projection study....

So far, have used JLEIC 10x100 GeV² projections in bins 0.1 < x < 0.9 for:

- ✓ F₂^p
- ✓ F_2^n from deuterium with tagged proton spectator
- F₂^d

Can check on-shell extrapolation by measuring F₂^p from deuterium with tagged neutron spectator, comparing to proton target data

Can check nuclear corrections to F_2^d against $F_2^{n (tagged)}$

- Finally will be able to distinguish between models!
- Assume 1% systematic uncertainty
- $W^2 > 3.5 \text{ GeV}^2$ and $Q^2 > 1.69 \text{ GeV}^2$ (standard CJ15 cuts)
- A simple study so far..

F_2^p (tagged) pseudodata vs x

Compressed scale makes it somewhat difficult to see the experimental and fit uncertainties

Currently no cut in y:

- would lose a little bit in the high Q² range from y<ymax, unlikely a problem since ymax ~0.85.
- would lose some low Q²
 leverage at large x from a
 y_min cut, might have impact
 on the gluon fits
- requires more careful simulations

10/fb luminosity

CJ15

CJ15+F2p+F2ntag 10/fb

CJ15+F2p+F2ntag+F2d 10/fb

Top: improvement in relative PDF uncertainties compared to CJ15

Bottom: relative CJ15 CJ15+F2p 10/fb uncertainties compared to CJ15+F2p+F2ntag 10/fb CJ15+F2p+F2ntag+F2d 10/fb CJ15

- Improvement in u impressive, but already small uncertainty
- Large improvement in d(x), ~50% CJ15+F2p 10/fb
 - d/u tracks d

Jefferson Lab

~20% improvement in g(x)

100/fb luminosity

- d quark precision will become comparable to current u!!
- CJ15
 CJ15+F2p
 CJ15+F2p+F2ntag
 CJ15+F2p+F2ntag+F2d
 CJ15+F2p+F2ntag+F2d
 - The u quark uncertainty becomes less than ~1%; may be important for large mass BSM new particles.
 - With d quark nailed by F₂ⁿ, fitting F₂^d data will explore details of nuclear effects

Improved d(x) precision is good news

• The d-quark goes from a few 10% to ~1% percent level

- Resolve long-standing mystery of d/u at large x, bell-weather for fundamental models of nucleon structure
- D/(p+n) in one experiment for the first time unprecedented handle on nuclear medium modifications
- Facilitate accurate neutron excess/isoscalar corrections
 - Important also for neutrino physics and nuclear PDFs

Improved g(x) precision also good news

• The gluons improve by a bit less than 10% per data set included, with the improvement seemingly independent of luminosity

- Possibly gluons are accessed by the F_2 shape in Q^2 , so that the precision of each data point is not very important, while the lever arm in Q^2 matters most

- If true, expect that adding new measurements we will continue to improve the gluons: for example, adding energy scans at 3+100 and 6+100 may reach a global improvement in the large-x gluons closer to 80%.
- Energy scans could also allow for direct access of gluons from F_L.
- Need more work to confirm above

Next Steps

- Currently looking at adding other constraints.
 - Data sets with different cms energies (30, 50, 56, 60).
 --Add F_L constraint. (see next slide)
 - Add charged current data (electron and positron) add constraints on u and d.
- Other possibilities (using particle ID):
 - Charm production in NC. Gluon constraint from BGF
 - Charm production in CC: strange content.

F_L at EIC: Measuring the Glue Directly

Longitudinal Structure Function F_L c

$$\propto \frac{\alpha_s}{2\pi} x \int_x^1 \frac{d\xi}{\xi} \,\xi(1-\xi) \,g\left(\frac{x}{\xi},Q^2\right) \,+\, \dots$$

- Experimentally can be determined directly IF VARIABLE ENERGIES!
- Highly sensitive to effects of gluon

How to measure Gluon distribution $G(x,Q^2)$:

- Scaling violation in F₂: $\delta F_2 / \delta \ln Q^2$
- $F_L \sim \alpha_s G(x,Q^2)$
- inelastic vector meson production (e.g. J/ψ)
- diffractive vector meson production ~ $[G(x,Q^2)]^2$

A 10/fb e-p run and an 100/fb e-d run (*with e-n_{tag}!*) reduces the u uncertainty to better than 1% and the d uncertainty down to 5% at x = 0.9.

The gluon can also likely be improved significantly.

These are the first naïve studies: if convinced that there will be sizable improvements, we need to move to more careful estimates.

Large-x nuclear gluons with charm at EIC

S. Furletov, Yu. Furletova, Ch. Hyde, N. Sato, M. Strikman, C. Weiss, prepared for DIS2017

1

- Nuclear modification of gluons gives insight into NN interactions in QCD $x > 0.3 \leftrightarrow$ modified single-nucleon structure, $x \sim 0.1 \leftrightarrow$ pairwise NN interactions
- Nuclear modification at large x poorly constrained by present data
- EIC: Limited information from inclusive F_{2A}, F_{LA}
- EIC: Heavy quark production as direct probe

Charm production rates at large x

- Charm production rates drop rapidly at large x
- Charm production rates $\sim 10^5/\text{bin}$ at $x \sim 0.1$ (int. lumi 10 fb⁻¹)
- Charm/DIS ratio \sim 2–3 % at $x \sim 0.1$, increases with Q^2

Charm reconstruction methods at large x

- Charm reconstruction using exclusive D-meson decays $D^{*+} \rightarrow \pi^+(\text{slow}) + (K^-\pi^+)_{D0}$ used at HERA w/o PID, efficiency < 1%. EIC PID + vertex detection allow use of other exclusive channels (D^0, D^+) Total efficiency estimated ~ 6%
- Charm reconstruction using inclusive modes with displaced vertex

D-meson decay length significance distribution used at HERA with vertex detector Efficiency estimated at ~30% (E. Aschenauer et al., 2016) Sys error estimate with simulations of track fitting & vertex reconstruction, in progress

• Charm reconstruction using high- p_T $c\bar{c}$ pairs

Charm impact on large-x nuclear gluon

- Impact of F_{2c} pseudodata on EPS09 studied quantified using MC reweighting Method of CJ15 analysis. Verified equivalence with Hessian reweighting.
- Here: Assumed 10% total error, dominated by systematics, point-to-point
- Substantial impact on large-x nuclear gluons
- Possible to constrain large—x nuclear gluons with charm at EIC!

Conclusions

- EIC has been so far discussed as a low-x machine.
- However, EIC will cover high-x at Q² between HERA and Jlab 12.
- The potential for EIC for high-x measurements is being explored.
 - Study nuclear effects
 - Constrain PDFs for searches at (HL-)LHC.
- The first studies look promising. Continuing on with exploratory studies.

Backups

F₂ⁿ better constrained

$F_2^{p} - F_2^{n}$ yields non-singlet distribution

- At moderate x (~0.3), singlet comparable to non-singlet
- Large uncertainties on singlet distribution

 in structure function measurements, comes from (small) scaling violations in F₂
- Q² evolution is simpler for the non-singlet (reduced number of splitting functions)
- Assuming a charge-symmetric sea, p-n isolates the non-singlet
- Such measurements provide a direct handle on the quark structure of the nucleon
- Also, need to pin down non-singlet (p-n) to extract singlet (complementary to F_L)

Example: Higgs production by gluon fusion

 This is the main production mechanism for a Higgs at the LHC

To calculate the cross section for this process in pp collisions, we need to know the gluon PDF

F_2^{n}/F_2^{p} (and, hence, d/u) is essentially unknown at large x:

- Conflicting fundamental theory pictures

- Data inconclusive due to uncertainties in deuterium nuclear corrections
 - Translates directly to large uncertainties on d(x), g(x) PDFs

Parton Distribution Functions (PDFs)

- Provide fundamental information regarding nucleon and nuclear structure
- Knowledge of the interaction initial state, and hence the PDFs, is critical to precision measurements at hadron colliders
 - Sensitivity to new physics, new heavy particles, requires better knowledge of large x PDFs

Improved Extraction of F_2^n from F_2^d and F_2^p

<u>New method</u>: employs iterative procedure of solving integral convolution equations

Y. Kahn, W. Melnitchouk, S.A. Kulagin, Phys. Rev. C 79, 035205 (2009)

 \succ Impulse Approximation – virtual photon scatters incoherently from individual nucleons

Tagged Structure Functions at the EIC

The technique is uniquely suited to colliders: no target material absorbing low-momentum nucleons

Tagged Structure Functions at HERA – Example: proton tag

- Tag leading baryon production
- ep \rightarrow eXN via color singlet exchange

EIC: Full Acceptance for Forward Physics!

Huge gain in acceptance for forward tagging to measure F₂ⁿ and diffractive physics!!!

(Tagged) Neutron Structure Extrapolation in t

- t resolution better than 20 MeV, < fermi momentum
- Resolution limited/given by ion momentum spread
- Allow precision extraction of F₂ⁿ neutron structure function

(Tagged) Neutron Structure Extrapolation in t

- 1 year of EIC @ luminosity of 10³² gives about 1 fb⁻¹
- 1 year of EIC @ luminosity of 10³³ gives about 10 fb⁻¹
- 1 year of EIC @ luminosity of 10³⁴ gives about 100 fb⁻¹