PDFs with the LHeC and LHC
A M Cooper-Sarkar on behalf of the LHeC study group
with special thanks to Voica Radescu
DIS 2017

The LHeC- a Large Hadron-Electron Collider
~50 -100 GeV electrons on 7 TeV protons (Linac- Ring).
Designed such that e-p can operate synchronously with p-p in the HL-LHC phase.
Currently uncertainties on the parton distribution functions (PDFs) limit searches for new heavy particles, dominate the theory uncertainty on Higgs production and limit the precision of M_W as well as the background to BSM searches.

With higher luminosity and higher energy machines on the horizon we will need higher precision PDFs.

BUT do we NEED an LHeC? Will we not improve the precision of the PDFs using LHC data itself?
lepton-proton facilities

LHeC: $\sqrt{s} = 1.3$ TeV
$\times 100$–1000 HERA lumi.

FCC-eh: $\sqrt{s} = 3.5$ TeV

LHC (and other future machines eg. FCC-pp) is/will be main discovery machine

LHeC not a competitor to these; complementary; synchronous with HL-LHC;
transforms them into high precision facilities
Current level of knowledge of PDFs at 13TeV (including Run-I LHC data) still have considerable uncertainty at high scale BUT at future colliders the low scale region will also have large uncertainties

... many thanks to Joey Huston
The LHeC option represents an increase in the kinematic reach of Deep Inelastic Scattering and an increase in the luminosity.

• This represents a tremendous potential for the increase in the precision of Parton Distribution Functions
• And the exploration of a kinematic region at low-x where we learn more about QCD- e.g. is there gluon saturation?
• Precision PDFs are needed for BSM physics
Let’s ask the question-
Can we determine PDFs just from the LHC?

NOT with any precision NO!

Present LHC W,Z data and jet data are included and LHC ultimate precision is extrapolated according to our current experience—we are systematics limited already

PDFs come from DIS

But this plot is a little old (2014) let us examine:

• Why the DIS data do better
• IF this is still true with our experience of PDF fitting today (2017)
Let us first examine WHY?

For illustration, these are plots of the strangeness fraction in the proton r_s from ATLAS analyses in which it is equal to the light quarks and in the HERAPDF1.5 in which it is ~ 0.5 of the light quarks.

This fraction is shown at the starting scale $Q^2_0 \sim 2$ GeV2 and at $Q^2 = M_W^2$

NOTE the difference in scale.

PDF uncertainties decrease as Q^2 increases because the PDFs depend LESS on the parametrisation at the starting scale and MORE on the known QCD evolution.

On each plot is shown a hypothetical measurement with $\pm 10\%$ accuracy. Clearly this could distinguish the r_s predictions if performed at Q^2_0, but not if performed at high scale.

At high scale we have to have much more accurate measurements.
So let’s see how well the LHC is doing
Use the NNPDF3.0 PDF sets with and without LHC data

Note that the NNPDF is the PDF analysis with the largest uncertainties outside the x region of constraining data because of the use of a neural net rather than a parmetrization.

Here we see predictions for u and d valence from NNPDF3.0 with and without the LHC data. At high-x there is some reduction in uncertainty from LHCb W^{+/−} data.
Now let’s compare this to the projections for the improvements from an LHeC measurement added to today’s data

LHC data has made an improvement at $x \sim 0.5$ about 30% in d_{valence}

LHeC data has made an improvement at $x \sim 0.5$ about 300% in d_{valence}

Do not compare the absolute sizes of the uncertainties, compare the level of improvement
Let’s recap how these LHeC predictions are obtained.

Studies beyond the LHeC CDR (2012) have now been made. The main difference is in assumptions about luminosity.

Gluon also comes from the scaling violations.
The potential for precision parton distributions at the LHeC is assessed using:

- LHeC simulated data
- HERA final combined data plus HERA jet data, BCDMS F2p data
- ATLAS 2010 jet data, CMS jet data 2011, CDF, D0 jet data
- CDF, D0 Z rapidity, CDF,D0 W-asymmetry, CMS Z rapidity, CMS W-lepton asymmetries
- ATLAS total and differential t-tbar 2011, CMS total and differential t-tbar 2011
- ATLAS 2011 W and Z precision data
- xFitter framework is used, with PDF fit settings as for HERAPDF2.0 AG

Now look at valence distributions at low-x

LHC gives improvements from ATLAS and CMS W-asymmetry data

The LHeC does rather better
The high x gluon is not well known. Current PDFs differ. LHC data on jet production has reduced the high-x uncertainty for NNPDF3.0.

The LHeC does rather better
Why are we interested in the high-x gluon? - one example

Many interesting processes at the LHC are gluon-gluon initiated Top, Higgs… BSM processes like gluon-gluon → gluino-gluino And the high-scale needed for this involves the high-x gluon The gluon-gluon luminosity at high-scale is not well-known This leads to uncertainties on the gluino pair production cross section

Which could be considerably reduced using LHeC data
The LHC data have not so far led to big improvements in the **high-x sea PDFs**. This could come from high-mass Drell-Yan data, but is unlikely to compete with the potential improvement from LHeC PDFs.

The gluon and sea evolution are intimately related. The LHeC can disentangle the sea from the valence at high-x through measurement of CC cross-sections and $F_2^{\gamma Z}, xF_3^{\gamma Z}$.

$x\bar{u}(x,Q)$, comparison

$x\bar{d}(x,Q)$, comparison
Why are we interested in the high-x sea? One example

Current BSM searches in High Mass Drell-Yan are limited by high-x antiquark uncertainties as well as by high-x valence uncertainties.

arXiv:1607.03669
Gluon at low x

The low x gluon is not well known. LHC data has not contributed much to this for two reasons:

- The data do not reach below $x \sim 10^{-3}$ for ATLAS, CMS.
- There is no direct probe of the gluon appropriate at low-x (LHCb data on open charm and beauty COULD help?)
- Our current knowledge comes from HERA. HERA sensitivity stops at $x > 5 \times 10^{-4}$.
- LHeC goes down to 10^{-6}.
The low x sea is better known than the low-x gluon, but still not well known

- LHC data has contributed through the low-mass Drell-Yan data
- However LHeC sensitivity is much better going down to 10^{-6}. The Sea is what DIS measures best
Why are we interested in low-x?

Because the HERA data indicated that there may be something new going on at low x
- New in the sense of a new regime of QCD
- Something that DGLAP evolution at NLO or NNLO cannot describe
- Needing $\ln(1/x)$ rather than $\ln Q^2$ resummation (BFKL)
- Or even non-linear evolution (BK, JIMWLK, CGC) and gluon saturation

The rise of the HERA F_2 structure function at low x was steeper than expected and continued to lower Q^2 than expected. This gave rise to speculation that one might have entered the BFKL domain. One way to test this is to make DGLAP QCD fits in which this domain is cut out ($Q^2 > A x^{-0.3}$).

If physics is the same above and below the cut then these fits will be compatible (although the cut fits will have larger uncertainties).

This is not the case….and this tendency is reconfirmed in the new HERA-I+II final combination data.
IN DGLAP based fits to inclusive data at low-x, we have $F_2 \sim xq$ for the sea
\[\frac{dF_2}{d\ln Q^2} \sim P_{qg} \times g \] for the gluon

Our deductions about gluon behaviour at low-x come via the DGLAP splitting function P_{qg}

If DGLAP is inadequate then so will our deductions about the shape of the gluon be inadequate. We need other ways to probe it, e.g.

FL is gluon dominated at low-x

\[
F_L(x, Q^2) = \frac{\alpha_s}{x} \left[\frac{4}{3} \int_0^1 \frac{dy}{y} z^2 F_2(y, Q^2) + 2z^2 (1-z) P_{qg}(y, Q^2) \right]
\]

IF DGLAP is at fault it will be harder for it to explain F_2 and F_L data simultaneously, but one needs precision data – which can come from the LHeC --a low energy run is planned

Blue is what we have now averaged over x for each Q^2 bin
Red is what we could get from the LHeC (note that E_e rather than E_p is varied to make this measurement so it does not interfere with $p-p$)

Compare LHeC pseudo-data predicted by a non-linear saturation based model to the DGLAP predictions.
The LHeC would also allow us to improve our knowledge of heavy quarks. Compare the potential for the measurement of $F_2^{c\text{-}\bar{c}}$ and $F_2^{b\text{-}\bar{b}}$ with what is currently available from HERA.

Why are $F_2^{b,c}$ measurements better?
- Higher cross section, higher Q^2, higher luminosity (F_2^{b}!)
- New generation of Si detectors

Top quarks and strange quarks could also be studied for the first time:
- Top: tPDF, cross section few pb at $E_e=60$GeV, $W_b \rightarrow t$
The strange PDF is not well known

- Is it suppressed compared to other light quarks?
- Is there strange-antistrange asymmetry?

LHeC could give direct sensitivity to strange through charm tagging in CC events.

Results are shown for 10% charm tagging efficiency, 1% light quark background in impact parameter.

This could give the first x,Q^2 measurement of the anti-strange PDF

(This also assumes an updated scenario from the CDR – see backup)
But all of this was based on knowledge of how the LHC contributes to our knowledge of PDFs TODAY. How about tomorrow? The NNPDF3.1 contains more LHC data including the most precise data set there has ever been on W,Z data.

Further high-x gluon improvement from t-tbar and Zpt as well as jets

Further quark improvement from Drell-Yan particularly the ATLAS W,Z precision measurement

Improvements are significant but still modest
But all of this was based on knowledge of how the LHC contributes to our knowledge of PDFs TODAY. How about in several years time.

As remarked earlier, to contribute significantly the measurements at the high-scales of the LHC have to be VERY precise.

Just how precise can we be?

We are already systematics limited.

Consider the most precise measurement there has ever been at LHC: the ATLAS inclusive W and Z differential distributions arXiv:1612.03016

- W: Total (0.6–1.0%), multijet background (0.3–0.7%)
- Z Central: Total (0.4%), reconstruction efficiency (0.2–0.3%)
- Z Forward: Total (2.3%), identification efficiency (1.5%)
- 1.8% luminosity uncertainty

We are unlikely to beat this even with an HL-LHC and the change in kinematic region to from 7/8 to 13/14 TeV does not change the x-region probed for PDFs much. So this is as good as it gets – at least for q-qbar
What does this precise W,Z measurement do for us?

- Inclusive rapidity-differential measurements of W^\pm and Z/γ^* production probe different combinations of PDFs. They provide constraints on the light flavour sea decomposition and the valence PDFs.
- W charge asymmetry measurements provide constraints on the u and d valence PDFs.
- The shape of the Z rapidity distribution, and the W/Z cross-section ratio probe the strange PDF.

The measurement uncertainties are smaller than the uncertainties on current PDF predictions SO...
e.g. It improves valence PDF uncertainties BUT does not compete with an LHeC.

It reduces the uncertainties on the strange sea— as well as pulling up its absolute value at low-\(x\).
Strange measurements can be much improved at the LHeC.

It is already included in NNPDF3.1, as seen on slide 21, with only modest improvement to uncertainties and it is already included in the ‘todays’ data of the LHeC studies.
The LHeC represents an increase in the kinematic reach of Deep Inelastic Scattering and an increase in the luminosity.

- This represents a tremendous increase in the precision of Parton Distribution Functions
- And the exploration of a kinematic region at low-x where we learn more about QCD beyond linear DGLAP evolution
- Such Precision PDFs are needed for BSM physics
- Data from the LHC itself cannot improve current PDFs to anything like the same degree
Backup
impact of different LHeC datasets

new since CDR
ERL scenario; interest in Higgs prefers e-, high polarisation

Ep=7 TeV, E=60 GeV:
NC,CC:

<table>
<thead>
<tr>
<th>P</th>
<th>L (fb⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>e+p</td>
<td>0</td>
</tr>
<tr>
<td>e-p</td>
<td>+80%</td>
</tr>
<tr>
<td>e-p</td>
<td>-80%</td>
</tr>
</tbody>
</table>

plus, dedicated measurements of strange, anti-strange, F2cc
(not yet F2bb, low Ep data, Fl)

more flexible PDF fit:

\[x_g, x_{uV}, x_dV, x_{ub}, x_{db}, x_{str} \]

\[xf(x) = A x^{B} (1-x)^{C} (1+Dx+Ex^2) \]

– 14 free parameters

can better constrain all PDFs
Master formulae for NC DIS

\[
\sigma_{r,NC} = \frac{d^2\sigma_{NC}}{dx dQ^2} \cdot \frac{Q^4 x}{2\pi\alpha^2 Y_+} = F_2 + \frac{Y_-}{Y_+} x F_3 - \frac{y^2}{Y_-} F_L
\]

\[
F_2^{\pm} = F_2 + \kappa Z (-v_e \mp Pa_e) \cdot F_2^\gamma Z + \kappa Z^2 (v_e^2 + a_e^2 \pm 2PV_e a_e) \cdot F_2^Z
\]

\[
x F_3^{\pm} = \kappa Z (\pm a_e + P v_e) \cdot x F_3^\gamma Z + \kappa Z^2 (\mp 2v_e a_e - P (v_e^2 + a_e^2)) \cdot x F_3^Z
\]

\[
(F_2, F_2^\gamma Z, F_2^Z) = x \sum (e_q^2, 2e_q v_q, v_q^2 + a_q^2) (q + \bar{q})
\]

\[
(x F_3^\gamma Z, x F_3^Z) = 2x \sum (e_q a_q, v_q a_q) (q - \bar{q}),
\]

\[
F_L(x) = \frac{\alpha_s}{4\pi} x^2 \int_x^1 \frac{dz}{z^3} \left[\frac{16}{3} F_2(z) + 8 \sum e_q^2 \left(1 - \frac{x}{z}\right) z g(z), \right]
\]

Vary charge and polarization and beam energy to disentangle contributions
Charged Currents

\[\sigma_{r,CC} = \frac{2\pi x}{Y_+ G_F^2} \left(\frac{M_W^2 + Q^2}{M_W^2} \right)^2 \frac{d^2 \sigma_{CC}}{dx dQ^2} \]

\[\sigma_{r,CC}^{\pm} = \frac{1 \pm P}{2} \left(W_2^+ + \frac{Y_-}{Y_+} x W_3^+ - \frac{y^2}{Y_+} W_L^+ \right) \]

\[W_2^+ = x(U + D), \quad xW_3^+ = x(D - U), \quad W_2^- = x(U + D), \quad xW_3^- = x(U - D) \]

\[U = u + c, \quad \overline{U} = \overline{u} + \overline{c}, \quad D = d + s, \quad \overline{D} = \overline{d} + \overline{s} \]

\[\sigma_{r,CC}^+ \sim xU + (1 - y)^2 xD, \]

\[\sigma_{r,CC}^- \sim xU + (1 - y)^2 x\overline{D} \]

\[\sigma_{r,NC}^{\pm} \sim [c_u(U + \overline{U}) + c_d(D + \overline{D})] + \kappa_Z [d_u(U - \overline{U}) + d_d(D - \overline{D})] \]

with \(c_{u,d} = c_{u,d}^2 + \kappa_Z (-\nu_e \mp Pa_e) e_{u,d} \nu_{u,d} \) and \(d_{u,d} = \pm a_e a_{u,d} e_{u,d} \).

Complete unfolding of all parton distributions to unprecedented accuracy
Further thoughts on low-x sea.

It is often assumed that u\bar{u}=d\bar{d} at low-x.

If we relax this assumption then PDF errors increase tremendously. But LHeC data can constrain this.

Here we compare uncertainties on the total sea distribution.

And here we compare uncertainties on the d/u ratio.

This would improve more if deuteron target data are used. Deuterons can also give information on neutron structure.
LHeC deuteron data

3.5 TeV \times 60 \text{GeV}, e-p, P=-80\%, 1 \text{fb}-1, \text{NC} and \text{CC}, experimental uncertainties

- symmetrised understanding of u-valence and d-valence
- future fits with ep+eD will lead to precise unfolding of u and d
Intrinsic Charm

Intrinsic charm: existence of $c\bar{c}$ pair as non-perturbative component in the bounch state nucleon (Fock state components such as $|uudc\bar{c}\rangle$)

→ may explain certain aspects of the charm data and dominate in some regions of the phase space

_for large x very good forward tag acceptance needed (possible with reduced E_p)_

simulated measurement of the charm structure function ($E_p=1$ TeV, $L=1$ fb$^{-1}$, CTEQ66)

→ reliable detection of an intrinsic heavy charm component challenging but possible
The dominant Higgs production mechanism at LHC is $g \, g \rightarrow H$

Thus the extra precision on the gluon PDF and $\alpha_s(M_Z)$ which can be obtained at the LHeC improves the precision of SM Higgs cross section predictions - and their dependence on Higgs mass

LHeC at high luminosity is also a Higgs factory, Higgs can be produced by WW, ZZ fusion and $H \rightarrow b\bar{b}$ decay is easily identified
A top PDF could be important at FCC
Can LHCb data on open charm and beauty help?

YES

But not as much as an LHeC