PDFs at the FCC-eh and strong coupling at the LHeC

Claire Gwenlan, Oxford for the LHeC and FCC-eh study groups

DIS17 workshop Birmingham, UK April 2017

(with thanks to M. Klein and V. Radescu)

LHeC and FCC-eh

LHeC (FCC-eh) complementary to, synchronous with, HL-LHC (FCC)

LHeC and FCC-eh

Lepton–Proton Scattering Facilities

HERA: world's first and still only ep collider ($\sqrt{s} \approx 300 \text{ GeV}$)

LHeC: future ep (eA) collider, proposed to run concurrently with HL-LHC; CDR arXiv:1206.2913 (complementary; additional discovery channels; precision PDFs and αs)

FCC-eh: further future **ep** collider, integrated with FCC; (further kinematic extension wrt **LHeC**)

LHeC (FCC-eh) complementary to, synchronous with, HL-LHC (FCC)

LHeC and FCC-eh

LHeC kinematic reach: Q² up to 10⁶ GeV² x down to 10⁻⁶

FCC-eh extends further, Q^2 to 10^7 GeV², x to 10^{-7}

- outline of this talk:
- PDFs at FCC-eh
- strong coupling (α_s)

• very rich physics programme; see also other talks in this workshop:

(PDFs at the LHeC (A Cooper-Sarkar); nPDFs (H Paukkunen); EW (D Britzger); top quark physics (H Sun); diffraction (P Newman); SM Higgs (M Tanaka); BSM Higgs and Di-Higgs (M Kumar))

parton distribution functions, and FCC

- improved understanding of proton structure (PDFs) crucial for maximising physics potential of LHC and future hadron colliders (Higgs, Mw, BSM searches, ...)
- see also talk by A.Cooper-Sarkar for improved PDFs from the LHeC
- FCC: potential future proton-proton collider, Eсм = 100 TeV
- will probe proton PDFs in <u>unexplored regions</u> of ultra-low x, and high Q²
- PROGRESS IN PDF DETERMINATION FOR FCC DEPENDS ON:
- complete exploitation of LHC and HL-LHC measurements
- developments in higher order calculations and techniques
- future ep collider before (EG. LHeC) and/or in parallel (FCC-eh) with FCC would vastly improve situation

Kinematics of a 100 TeV FCC

Plot by J. Rojo, Dec 2013

small x becomes relevant even for "common" physics (EG. W, Z, H, t)

in extended kinematic regime

х

LHC constraints for FCC?

EG: prospects for better control of small x gluon using LHCb forward charm

other LHC data will also constrain PDFS; must be exploited, but cannot resolve parton distributions precisely (also see talk by A.Cooper-Sarkar)

what about future ep colliders?

simulated FCC-eh data

new simulated inclusive NC and CC DIS data for latest running scenarios

NC/CC	$E_e [GeV]$	E_p [TeV]	P(e)	charge	lumi. $[fb^{-1}]$		
NC	$60 \ (60)$	50(7)	-0.8	-1	1000		
$\mathbf{C}\mathbf{C}$	$60 \ (60)$	50(7)	-0.8	-1	1000	e-, neg. poi.	
NC	60~(60)	50(7)	+0.8	-1	300	e-, pos. pol.	
$\mathbf{C}\mathbf{C}$	60~(60)	50(7)	+0.8	-1	300		
NC	60~(60)	50(7)	0	+1	100		
$\mathbf{C}\mathbf{C}$	60~(60)	50(7)	0	+1	100	e-, unpoi.	
NC	20(60)	7(1)	0	-1	100		
$\mathbf{C}\mathbf{C}$	20(60)	7(1)	0	-1	100	low energy	

* second and third columns show FCC-eh (LHeC)

(M.Klein)

error assumptions:

elec. scale: 0.1%; hadr. scale 0.5% radcor: 0.3%; γp at high y: 1% uncorrelated extra eff. 0.5%

more data, and more options c.f. previous studies

all work in progress

FCC-eh vs LHeC

- seen already how precisely
 LHeC can control PDFs
- need FCC-eh to explore below x=10⁻⁶
- FCC-eh may further improve, and explore small x phenomenology

(adding low Ep data has small impact here)

NLO QCD fit, using xFitter parameterisation details in backups

FCC-eh vs LHeC

- similar uncertainties at low x from FCC-eh cf. LHeC
- LHeC: no data below x=10⁻⁶; need FCC-eh to directly constrain
- combination beneficial

"today": same fit set up

50 data sets from fixed target to colliders using ep, pp, ppbar, and from DIS to jets, DY

versus situation today – low x

EG. gluon and ubar

and recall – no current data much below x=10⁻⁴ to directly constrain; even this is an extrapolation for low x

versus situation today – low x

same y-scale

14

FCC-eh (or LHeC) would provide single, precise and unambiguous dataset (explore low x QCD, DGLAP vs BFKL, non-linear evolution, gluon saturation; implications also for ultra high energy CR)

gluon and sea at high x

- very strong high x constraints;
 crucial for new physics searches
- LHeC does better with current simul. conditions:- FCC-eh extends to smaller x than LHeC; correspondingly, more difficult at large x

gluon and sea at high x

very strong high x constraints;
 crucial for new physics searches

same y-scale

 LHeC does better with current simul. conditions:- FCC-eh extends to smaller x than LHeC; correspondingly, more difficult at large x

ep: precise determination, free from higher twist corrections and nuclear uncertainties

summary of FCC-eh PDFs

some other considerations

FCC not simply a scaled version of LHC (qualitatively new phenomena introduced)

strong coupling

strong coupling, α_s , is a fundamental parameter, not given by theory

extracted from experimental measurements in e+e-, ep, pp, and from lattice QCD calculations

PDG16 world average: $\alpha_s(Mz)=0.1181\pm0.0011$ cf. PDG13: $\alpha_s(Mz)=0.1184\pm0.0006$ with QCD lattice treated less conservatively cf. PDG16

BUT measurements **not all consistent**: what is true central value; true uncertainty; role of lattice calculations; is α s(DIS) smaller than world average?

αs is least known of coupling constants

precision α_s needed to constrain GUT scenarios

strong coupling, and Higgs

uncertainty on inclusive Higgs production G. Zanderighi, Moriond, March 2016 (from C. Anastasiou et al., arXiv:1602.00695)

PDF+α_s dominates Higgs cross section uncertainty

... and of course translates into uncertainty on all hadronic cross sections

strong coupling from LHeC

strong coupling from LHeC

(V Radescu)

case	cut $[Q^2 \text{ in } \text{GeV}^2]$	relative precision in $\%$
HERA only $(14p)$	$Q^{2} > 3.5$	1.94
HERA+jets $(14p)$	$Q^2>3.5$	0.82
LHeC only (14p)	$Q^{2} > 3.5$	0.15
LHeC only $(10p)$	$Q^2>3.5$	0.17
LHeC only $(14p)$	$Q^{2} > 20$	0.25
LHeC+HERA (10p)	$Q^{2} > 3.5$	0.11
LHeC+HERA (10p)	$Q^{2} > 7.0$	0.20
LHeC+HERA (10p)	$Q^2 > 10.$	0.26

α_s to per mille precision when combined with HERA data

(two independent QCD analyses, using LHeC+HERA and LHeC+BCDMS (T Kluge))

strong coupling from jet data in ep

strong coupling from LHeC and FCC-he simulated **DIS jet data** to come...

NNLO fit now also possible

EG. new H1 et al. preliminary result (H1prelim-17-031; see talk by

D. Britzger, this conference)

LHeC jet data

(plots from LHeC CDR – illustrative)

impact of LHeC jet data on α_s (and PDFs) expected to be substantial

summary of α_s uncertainties

(Snowmass13 report, arXiv:1310.5189)

Method	Current relative precision	Future relative precision		
e^+e^- evt shapes	$expt \sim 1\%$ (LEP)		< 1% possible (ILC/TLEP)	
	thry $\sim 1-3\%$ (NNLO+up to N ³ LL, n.p. signif.) [27]		$\sim 1\%$ (control n.p. via Q^2 -dep.)	
e^+e^- jet rates	$expt \sim 2\%$ (LEP)		< 1% possible (ILC/TLEP)	
	thry $\sim 1\%$ (NNLO, n.p. moderate)	[28]	$\sim 0.5\%$ (NLL missing)	
precision EW	$expt \sim 3\% \ (R_Z, \text{LEP})$		0.1% (TLEP [10]), $0.5%$ (ILC [11])	ner mille
	thry $\sim 0.5\%$ (N ³ LO, n.p. small)	[9, 29]	$\sim 0.3\%~({\rm N}^4{\rm LO}$ feasible, $\sim 10~{\rm yrs})$	
au decays	$expt \sim 0.5\%$ (LEP, B-factories)		< 0.2% possible (ILC/TLEP)	T
	thry $\sim 2\%$ (N ³ LO, n.p. small)	[8]	$\sim 1\%$ (N ⁴ LO feasible, ~ 10 yrs)	
<i>ep</i> colliders	$\sim 12\%$ (pdf fit dependent)	[30, 31],	0.1% (LHeC + HERA [23])	per mille
	(mostly theory, NNLO)	[32, 33]	$\sim 0.5\%$ (at least N^3LO required)	
hadron colliders	~ 4% (Tev. jets), ~ 3% (LHC $t\bar{t}$)		< 1% challenging	Ţ
	(NLO jets, NNLO $t\bar{t}$, gluon uncert.)	$\left[17, 21, 34\right]$	(NNLO jets imminent [22])	
lattice	$\sim 0.5\%$ (Wilson loops, correlators,)		$\sim 0.3\%$	
	(limited by accuracy of pert. th.)	[35 - 37]	$(\sim 5 \text{ yrs } [38])$	

αs from LHeC (and FCC-he) stands in own right as a highest precision result, not just complementary to other colliders

summary

- improved understanding of proton structure crucial for LHC, and even more so for future hadron colliders
- FCC will probe unexplored regions of ultra-low x and very high Q², where proton PDFs poorly known and unconstrained
- FCC-eh proposed as ep option to run synchronously with FCC
- studies show dramatic improvement of PDFs from FCC-eh
- similar level of PDF precision as LHeC (FCC-eh extends to lower x; LHeC simulations show some additional constraint at high x)
- α_s, fundamental param., limits precision on important processes
- per mille precision possible (LHeC; FCC-eh studies underway)
- several results shown here are hot off the press further WORK IN PROGRESS:
 further examine simulation assumptions; relax QCD fit assumptions; inclusion
 of jet, heavy flavour (PDFs, αs); nuclear PDFs; …

FCC – x regions probed

(arXiv:1607.01831)

Process	M_X	x_{\min}			
		y = 0	y = 2	y = 4	
Soft QCD					
Charm pair production	1 (10) GeV	$10^{-5} (10^{-4})$	$1.4 \cdot 10^{-6} (1.4 \cdot 10^{-5})$	$1.8 \cdot 10^{-7} (1.8 \cdot 10^{-6})$	
Low-mass Drell-Yan					
W and Z production					
Top pair production	80 (400) GeV	$8 \cdot 10^{-4} (4 \cdot 10^{-3})$	$1.1 \cdot 10^{-4} (5.4 \cdot 10^{-4})$	$1.5 \cdot 10^{-5} (7.3 \cdot 10^{-5})$	
Inclusive Higgs					
Heavy New Physics	5 (25) TeV	0.05 (0.25)	0.007 (-)	_	

Table 1: Kinematical coverage in the (x, M_X) plane for representative processes at a 100 TeV hadron collider. For each type of process (low mass, electroweak scale processes, and heavy new physics) we indicate the relevant range for the final-state invariant mass M_X and the approximate minimum value of x probed in the PDFs, $x_{\min} = (M_X/\sqrt{s}) \exp(-|y|)$, for central (y = 0), intermediate (|y| = 2) and forward (|y| = 4) rapidities.

previous simulation

FCC-eh vs LHeC vs HERA

FCC-he can further improve on LHeC, and explore low-x phenomenology

FCC-eh vs LHeC kinematic coverage

new simulated inclusive NC and CC DIS data for latest running scenarios

QCD fit parameterisation

$$\begin{aligned} xg(x) &= A_g x^{B_g} (1-x)^{C_g} (1+D_g x) \\ xu_v(x) &= A_{u_v} x^{B_{u_v}} (1-x)^{C_{u_v}} (1+E_{u_v} x^2) \\ xd_v(x) &= A_{d_v} x^{B_{d_v}} (1-x)^{C_{d_v}} \\ x\bar{U}(x) &= A_{\bar{U}} x^{B_{\bar{U}}} (1-x)^{C_{\bar{U}}} \\ x\bar{D}(x) &= A_{\bar{D}} x^{B_{\bar{D}}} (1-x)^{C_{\bar{D}}} \end{aligned}$$

FCC-eh vs LHeC

impact with and without low energy data shown separately

(V.Radescu)

34

low x PDFs

- similar uncertainties at low x from FCC-eh cf. LHeC
- LHeC: no data below $x=10^{-6}$; need **FCC-eh** to directly constrain
- combination beneficial

high x PDFs

- very strong high x constraints
- LHeC does better with current simulation conditions:- FCC-eh extends to smaller x than LHeC; correspondingly, more difficult at large x

(V.Radescu)

ATLAS Jet data $0 \le y < 0.3 \text{ R}=0.6$
ATLAS Jet data $0.3 \le y < 0.8 \text{ R} = 0.6$
ATLAS Jet data $0.8 \le y < 1.2 \text{ R}=0.6$
ATLAS Jet data $1.2 \le y < 2.1 \text{ R}=0.6$
ATLAS Jet data $2.1 \le y < 2.8 \text{ R}=0.6$
ATLAS Jet data $2.8 \le y < 3.6 \text{ R} = 0.6$
ATLAS Jet data $3.6 \le y < 4.4 \text{ R}=0.6$
ZEUS inclusive jet 98-00 data
ZEUS inclusive dijet 98-00/04-07 data
H1 inclusive jet 99-00 data
H1 low Q2 inclusive jet 99-00 data
ZEUS inclusive jet 96-97 data
CDF inclusive jets
CDF Z rapidity 2010
D0 pp jets
D0 Z rapidity 2007
D0 W asymmetry 2013
D0 W→mu nu lepton asymmetry ptl > 35 GeV
CDF W asymmetry 2009
BCDMS F2p 100GeV
ATLAS high mass DY mass 2011
BCDMS F2p 200GeV
BCDMS F2p 280GeV
HERA1+2 CCep
HERA1+2 CCem
HERA1+2 NCem
HERA1+2 NCep 820
HERA1+2 NCep 920
HERA1+2 NCep 460
HERA1+2 NCep 575
ATLAS low mass DY 2011
ATLAS DY mass 2010 extended data
CMS inclusive jets 2011
CMS Norm. differential ttbar vs pt 7 TeV
ATLAS Norm. differential ttbar vs pT 7 TeV
CMS total ttbar 7TeV mt=173.3 GeV
ATLAS total ttbar 7 TeV mt=173.3 GeV
CMS electon Asymmetry rapidity
CMS Boson rapidity
CMS W muon asymmetry
H1 normalised inclusive jets with unfolding
HI normalised dijets with unfolding
HI normalised trijets with unfolding
ATLAS low mass Z rapidity 2011
ATLAS peak CC Z rapidity 2011
ATLAS peak CF Z rapidity 2011
ATLAS high mass CC Z rapidity 2011
AT LAS high mass CF Z rapidity 2011
ATLAS W- lepton rapidity 2011
AT LAS W + lepton rapidity 2011

vs same fit with world data

(V.Radescu)

"**today**": 50 data sets from fixed target to colliders using ep, pp, ppbar, and from DIS to jets, Drell-Yan (same fit setup)

vs same fit with world data

vs same fit with world data – low x

Higgs

uncertainty on Higgs production

M. Ubiali, this conference