QCD at future e⁺e⁻ colliders

DIS 2017 Birmingham, 5th April 2017 David d'Enterria (CERN)

Mostly based on FCC-ee studies published as: arXiv:1702.01329, arXiv:1512.05194

Proceedings, Parton Radiation and Fragmentation from LHC to FCC-ee : CERN, Geneva, Switzerland, November 22-23, 2016 David d'Enterria (ed.) (CERN), Peter Z. Skands (ed.) (Monash U.). Feb 4, 2017. 181 pp. COEPP-MN-17-1 Conference: C16-11-21.1 Contributions

e-Print: arXiv:1702.01329 [hep-ph] | PDF

Proceedings, High-Precision α_s Measurements from LHC to FCC-ee : CERN, Geneva, Switzerland, October 2-13, 2015 David d'Enterria (ed.) (CERN) *et al.*. Dec 16, 2015. 135 pp. CERN-PH-TH-2015-299, COEPP-MN-15-13, FERMILAB-CONF-15-610-T Conference: C15-10-12.1 Contributions e-Print: arXiv:1512.05194 [hep-ph] | PDF

QCD physics in e⁺e⁻ collisions

e⁺e⁻ collisions provide an extremely clean environment with fullycontrolled initial-state to highly precisely probe q,g dynamics:

Advantages compared to p-p collisions:

- Electroweak initial-state with known kinematics
- No QCD "underlying event"
- Smaller QCD radiation (only in final-state)
- Smaller non-pQCD uncertainties (no PDFs)

Plus QCD physics in $\gamma \gamma$ (EPA) collisions:

EU HEP mid-term perspectives (2030-2040)

- Indirect new physics searches: Higher-precision/lumi e⁺e⁻ colliders.
- In May 2013, European Strategy said (very similar statements from US)
 - Acknowledge the strong physics case of e⁺e⁻ colliders with intermediate √s
 - Participate in ILC if Japan government moves forward with the project
 - In the context of the FCC, perform accelerator R&D and design studies
 - In view of a high-luminosity, high-energy, circular e⁺e⁻ collider as a first step

EU HEP long-term perspectives (2040-2060)

- Direct new physics searches: Higher-energy colliders.
- In May 2013, European Strategy said (very similar statements from US)
 - Perform R&D and design studies for high-energy frontier machines at CERN
 - HE-LHC, a programme for an energy increase to 33 TeV in the LHC tunnel
 - FCC, a 100-km circular ring with a pp collider long-term project at $\sqrt{s} = 100 \text{ TeV}$
 - CLIC, an e⁺e⁻ collider project with √s from 0.3 to 3 TeV

Similar circular projects (50 or 70km) in China pp collisions at √s ~ 50 or 70 TeV

CERN Future Circular Collider (FCC) project

FCC European Design Study, ongoing CDR (expected by mid 2018)

5/22

- 100 km ring, Nb₃Sn 16 T magnets, LHC used as injector:
- pp at √s=100 TeV, L~2x10³⁵, L_{int} ~ 1 ab⁻¹/yr (also pPb & PbPb at √s=39–63 TeV)

 e⁺e⁻ option (before pp) at √s=90–350 GeV L~10³⁵–4·10³⁶, L_{int}=1–90 ab⁻¹/yr for H, Z

• e-h option at $\sqrt{s=3.5}$ TeV, L~10³⁴ L_{int} ~ 0.1 ab⁻¹/yr. (also e-Pb at \sqrt{s} ~1–3 TeV)

DIS'17, Birmingham, April 2017

CERN FCC-ee project

FCC European Design Study, ongoing CDR (expected by mid 2018)

• e⁺e⁻ option (before pp) at √s = **90**, 125, 160, **240**, 350 GeV

$\sqrt{\mathrm{s}}$ (GeV):	<mark>90 (Z)</mark>	125 (eeH)	160 (WW)	240 (HZ)	$350~(tar{t})$	$350 (WW \rightarrow H)$
σ	43 nb	290 ab	4 pb	200 fb	0.5 pb	25 fb
$L/IP \ (cm^{-2} s^{-1})$	$4.3 \cdot 10^{36}$	$2.2 \cdot 10^{36}$	$7.6 \cdot 10^{35}$	$1.8 \cdot 10^{35}$	5.10^{34}	$5 \cdot 10^{34}$
$\mathcal{L}_{\mathrm{int}} \; (\mathrm{ab}^{-1}/\mathrm{yr}, 2 \; \mathrm{IPs})$	86	45	15	3.5	1.0	1.0
Events/year (2 IPs)	$3.7 \cdot 10^{12}$	$1.3 \cdot 10^4$	$6.1 \cdot 10^{7}$	$7.0 \cdot 10^5$	$5 \cdot 10^5$	$2.5 \cdot 10^4$
Years needed (2 IPs)	2.5	1.5	1	3	0.5	3
# of light-q jets/year:	$\mathcal{O}(10^{12})$	—	<i>O</i> (10 ⁷)	$\mathcal{O}(10^6)$	—	-
# of gluon-jets/year:	$O(10^{11})$	$O(10^{3})$	$\mathcal{O}(10^6)$	<i>O</i> (10⁵)	-	<i>O</i> (10 ³)
# of heavy-Q jets/yr:	$O(10^{12})$	<i>O</i> (10 ⁴)	<i>O</i> (10 ⁷)	$\mathcal{O}(10^6)$	<i>O</i> (10⁵)	<i>O</i> (10⁴)

DIS'17, Birmingham, April 2017

QCD = crucial SM sector at future e⁺e⁻ colliders

- Though QCD is not per se the main driving force behind e⁺e⁻ machines, QCD is crucial for many measurements (signals & backgrounds):
- High-precision α_s : Affects SM fits/tests, all hadronic decays,...
- NⁿLO corrs., NⁿLL resummations: Needed for all precise QCD final states
- Heavy-Quark/Quark/Gluon separation, subjet structure, boosted topologies,...: Needed for all precision measurements & searches with final jets.
- Non-perturbative QCD: Colour reconnection affects e^+e^- jetty final-states: $e^+e^- \rightarrow WW \rightarrow 4j$, $Z \rightarrow 4j$, tt-(m_{top} extraction)
- I will cover a few of the ongoing dedicated QCD studies:
 - FCC (ee): Multiple studies under investigation. (SppC/CEPC: Similar possibilities as FCC:not investigated, also lower lumi)
 - ILC (GigaZ option): α_s determination.
 - CLIC: photon-photon QCD physics (e.g. γ structure function).
 - (There exist a few possibilities at Belle-II and other low- $\sqrt{s} e^+e^-$ machines)

• ...

QCD coupling α_s

- Determines strength of the strong interaction between quarks & gluons.
- → Single free parameter in QCD in the $m_{q} \rightarrow 0$ limit.
- Determined at a ref. scale (Q=m_z), decreases as $\alpha_s \sim \ln(Q^2/\Lambda^2)^1$, $\Lambda \sim 0.2$ GeV

QCD coupling α_s

- Determines strength of the strong interaction between quarks & gluons.
- → Single free parameter in QCD in the $m_{q} \rightarrow 0$ limit.
- Determined at a ref. scale (Q=m₇), decreases as $\alpha_s \sim \ln(Q^2/\Lambda^2)^1$, $\Lambda \sim 0.2$ GeV

• Least precisely known of all interaction couplings ! $\delta \alpha \sim 10^{-10} \ll \delta G_{_{\rm F}} \ll 10^{-7} \ll \delta G \sim 10^{-5} \ll \delta \alpha_{_{\rm S}} \sim 10^{-3}$

Importance of the QCD coupling α_s

Impacts all QCD x-sections & decays (H), precision top & parametric EWPO:

					Msbar mass error	\frown		
Process	σ (pb)	$\delta \alpha_s(\%)$	PDF + $\alpha_s(\%)$	Scale($\%$)	$(\delta M_t^{ m SD-low})^{ m exp}$	$(\delta M_t^{ m SD-low})^t$	theo $(\delta \overline{m}_t(\overline{m}_t))^{\text{conversion}}$	$\left(\left(\delta \overline{m}_t(\overline{m}_t)\right)^{\alpha_s}\right)$
ggH	49.87	± 3.7	-6.2 +7.4	-2.61 + 0.32	40 MeV	50 MeV	7 – 23 MeV	70 MeV
ttH	0.611	± 3.0	\pm 8.9	-9.3 + 5.9	\Rightarrow improvement	t in α_s crucial		$\delta\alpha_s(M_z) = 0.001$
Channel	$M_{ m H}[{ m GeV}]$	$\delta \alpha_s(\%)$	Δm_b Δ	Δm_c	Quantity	FCC-ee fu	iture param.unc.	Main source
$H \rightarrow c\bar{c}$	126	± 7.1	$\pm 0.1\%$ =	± 2.3 %	Γ_Z [MeV]	0.1	0.1	$\delta lpha_s$
$H \rightarrow gg$	126	± 4.1	$\pm 0.1\%$ =	$\pm 0 \%$	$R_b \ [10^{-5}]$	6	< 1	$\delta \alpha_s$
<u> 00</u>					R_ℓ [10 ⁻³]	1	1.3	$\delta \alpha_s$

Sven Heinemeyer – 1st FCC physics workshop, CERN, 17.01.2017

Impacts physics approaching Planck scale: EW vacuum stability, GUT

World α_s determination (PDG 2016)

Determined today by comparing 6 experimental observables to pQCD NNLO,N³LO predictions, plus global average at the Z pole scale:

World α_s determination (PDG 2016)

Determined today by comparing 6 experimental observables to pQCD NNLO,N³LO predictions, plus global average at the Z pole scale.

α_s via hadronic Z decays

α_s via hadronic W decays

• Computed at N^{2,3}LO: $\Gamma_{W,had} = \frac{\sqrt{2}}{4\pi} G_F m_W^3 \sum_{quarks i,j} |V_{i,j}|^2 \left[1 + \sum_{k=1}^4 \left(\frac{\alpha_s}{\pi}\right)^k + \delta_{electroweak}(\alpha) + \delta_{mixed}(\alpha\alpha_s) \right]$ ★ LEP: Γ_w = 1405±29 MeV (±2%), BR_w = 0.6741±0.0027 (±0.4%) Extraction with large exp. & parametric $\alpha_{s}(M_{z}) = 0.117 \pm 0.040$ (±35%) (CKM V_{cs}) uncertainties today: CKM unitarity $R_{W, exp} = 2.069 \pm 0.013$ $R_{W, exp}^{FCC-ee} = 2.069 (1 \pm 1 \times 10^{-4})$ CKM unitarity Experimental CKM 0.16 0.121 0.14 $(m_{w}^2) = 0.120 \pm 0.021_{exp} \pm 0.003_{th} \pm 0.001_{ch}$ 0.12 FCC-ee estimate 0,120 0,10 $\alpha_{s}(m_{W}^{2})$ $lpha_{\rm s}(m_W^2)$ $\alpha_{\rm e}({\rm m}_{\rm w}^2) = 0.1197 \pm 0.0003_{\rm ex}$ 0,08 0.06 0,119 -0.04 0.02 - $\alpha_{s}(m_{W}^{2}) = 0.0 \pm 0.16_{par} \pm 0.02_{exp}$ 0,118-0.00 2,00 2,02 2,04 2,06 2,08 2,10 2,12 2,14 2,16 2,0680 2,0685 2,0690 2,0695 2,0700 1.98 R_w R_{w} [D.d'E, M.Srebre, PLB763(2016)465] \Rightarrow <u>FCC-ee</u>: – Huge W stats (×10⁴ LEP) will lead to: $\delta \alpha_{c} < 0.3\%$

– TH uncertainty: $|\delta V_{cs}|$ to be significantly improved (10⁻⁴)

α_s from hadronic τ -lepton decays

• Computed at N³LO:
$$R_{\tau} \equiv \frac{\Gamma(\tau^- \to \nu_{\tau} + \text{hadrons})}{\Gamma(\tau^- \to \nu_{\tau} e^- \bar{\nu}_e)} = S_{\text{EW}} N_C (1 + \sum_{n=1}^{4} c_n \left(\frac{\alpha_s}{\pi}\right)^n + \mathcal{O}(\alpha_s^5) + \delta_{\text{np}})$$

♦ Experimentally: R_{τ.exp} = 3.4697 ± 0.0080 (±0.23%)

 Various pQCD approaches (FOPT vs CIPT) & treatment of non-pQCD contributions, yield different results.

Uncertainty slightly increased: 2013 ($\pm 1.3\%$) \rightarrow 2015 ($\pm 1.5\%$)

- Future prospects:
 - Better understanding of FOPT vs CIPT differences.
 - Better spectral functions needed (high stats & better precision):
 B-factories (BELLE-II)
 - High-stats: $\mathcal{O}(10^{11})$ from Z($\tau\tau$) at FCC-ee(90) (less Giga-Z): δ

α_s via e⁺e⁻ jet event shapes & rates

LEP data for thrust, C-parameter, jet shapes, 3-jet x-sections

Results sensitive to non-pQCD (hadronization) accounted for via MCs or analytically:

acy.

$$\tau = 1 - \max_{\hat{n}} \frac{\sum |\vec{p}_i \cdot \hat{n}|}{\sum |\vec{p}_i|}$$

$$C = \frac{3}{2} \frac{\sum_{i,j} |\vec{p}_i| |\vec{p}_j| \sin^2 \theta_{ij}}{(\sum_i |\vec{p}_i|)^2}$$

- ♦ FCC-ee:
 - Higher- \sqrt{s} data needed for rates (lower- \sqrt{s} for shapes): $\delta \alpha_s < 1\%$
 - TH uncert.: Jet rates with improved (NNLL or N³LL) resummation

DIS'17, Birmingham, April 2017

David d'Enterria (CERN)

α_s from γ QCD structure function

2009/04/25

10

 10^{4} Q² [GeV²]

David d'Enterria (CERN)

High-precision parton FFs & hadronization

Parton-to-hadron fragmentation functions known at NNLO at high-z &

• FCC-ee (much broader z range) allow for α_s extraction with $\delta \alpha_s < 1\%$

High-precision PID'd hadrons allow for detailed non-pQCD studies: baryon & strangeness production, Bose-Einstein and Fermi-Dirac final-state correlations, colour string dynamics (spin effects, helix,...):

High-precision jet substructure (angularities)

High-stats & high-precision (clean) jet structure at FCC-ee energies:

High-precision g-jet studies via $e^+e^- \rightarrow H(gg)+X$

00000000 FCC-ee H(gg) is a "pure gluon" factory: t Η $H \rightarrow gg$ (BR~10% accurately know) provides t O(200.000) extra-clean digluon events: 00000000 High-precision study of gluon radiation & g-jet properties G. Soyez, K. Hamacher, G. Rauco, S. Tokar, Y. Sakaki Handles to split degeneracies $Z(l^+l^-)+H(gg)$ $H \rightarrow gg$ $H \rightarrow gg vs Z \rightarrow qq$ 3.5 Pythia8 з Rely on good $H \rightarrow gg vs H \rightarrow bb$ separation; $1/N \, dN/d \dot{M}_{1/2}^1$ 2.5 with mMDT mandated by Higgs studies requirements anyway? 2 $Z \rightarrow bbg vs Z \rightarrow qq(g)$ 1.5 1 g in one hemisphere recoils against two b-jets in 0.5 LH angularities other hemisphere: **b** tagging 0.8 0.2 0.4 0.6 Vary jet radius: **small-R** → **calo resolution** $\lambda_{1/2}^1$ Check NⁿLO antenna functions (R ~ 0.1 also useful for jet substructure) Improve q/g/Q discrim.tools (BSM) Vary E_{CM} range : below m_Z : radiative events – Octet neutralization? (zero-charge) → forward boosted gluon jet w/ rap-gaps) (also useful for FFs & general scaling studies); Colour reconnection? Glueballs? Scaling is **slow**, logarithmic \rightarrow large lever arm

Leading η's,baryons in g jets?

Colour reconnection in multi-jet final states

- Colour reconnection among partons in e⁺e⁻ = Source of uncertainty in m_w, m_{top}, aGC extractions in multijet final-states: e⁺e⁻ → WW(4j), Z(4j), tt
- Use e⁺e⁻ leptonic final-states to learn about CR:
 - At LEP 2: hot topic (by QCD standards): 'string drag' effect on W mass
 - Non-zero effect convincingly demonstrated at LEP-2
 - No-CR excluded at 99.5% CL [Phys.Rept. 532 (2013) 119]
 - But not much detailed (differential) information
 - Thousand times more WW at FCC-ee
 - Sjöstrand: turn the W mass problem around; use huge sample of semi-leptonic events to measure m_w
 - \rightarrow use as constraint to measure CR in hadronic WW

Has become even hotter topic at LHC

It appears jet universality is under heavy attack. Fundamental to understanding & modeling hadronisation

Follow-up studies now underway at LHC.

High-stats ee \rightarrow other side of story

Also relevant in (hadronic) ee \rightarrow tt, and Z \rightarrow 4 jets

DIS'17, Birmingham, April 2017

 \otimes kinematics

T. Sjöstrand, W. Metzger, S. Kluth, C. Bierlich

+ Overlaps → interactions? increased tensions (strangeness)? breakdown of string picture?

21/22

Summary

The precision required to fully exploit the future ee/pp/ep/eA/AA SM & BSM programs requires exquisite control of (n)pQCD, accessible thanks to multiple, unique, high-stats, clean e⁺e⁻ measurements:

Backup slides