LHeC and FCChe: performances, designs and challenges

DIS17, Birmingham, UK

Dario Pellegrini (CERN) for the LHeC and FCC-he Machine Study Groups

Apr 5th, 2017

Lepton-hadron collisions at CERN?

Lepton-hadron collisions at CERN?

- Short term (<10y): focus on the HL-LHC \rightarrow still can do development, prototyping, technology demonstrator.
- Mid term (10-20y): upgrade the HL-LHC with a lepton facility?
- Long term (>20y): which possibilities within the FCC context?

Lepton-hadron collisions at CERN?

- Short term (<10y): focus on the HL-LHC \rightarrow still can do development, prototyping, technology demonstrator.
- Mid term (10-20y): upgrade the HL-LHC with a lepton facility?
- Long term (>20y): which possibilities within the FCC context?

Which kind of design to maximise performance/cost while minimising interference?

LHeC

The Large Hadron Electron Collider

http://lhec.web.cern.ch

- Design a facility capable to provide electrons for collision with the beam in LHC,
- Minimize the impact on the LHC:
 - during construction (avoid long shutdown period).
 - during operation (minimal perturbation of the LHC beams).

Total grid power consumption < 100 MW

Trade off between energy and luminosity:

- 60 GeV as baseline energy
- Highest luminosity achievable (> 10³³ cm⁻²s⁻¹)

Ring-Ring or (Energy Recovery) Linac-Ring

Ring-Ring or (Energy Recovery) Linac-Ring

Ring-Ring or (Energy Recovery) Linac-Ring

Baseline Design

Linac Ring choice mainly to avoid interference with the LHC program and infrastructure.

CW operation: bunches are continuously injected and extracted from the racetrack. Bunches at different number of turns (accelerating and decelerating) are interleaved.

Machine Parameters

 $\mathsf{baseline} \to \mathsf{hi}\text{-}\mathsf{lumi} \ \mathsf{upgrade}$

	Protons	Electrons
Beam Energy [GeV]	7000	60
Luminosity $[10^{33} \text{ cm}^{-2} \text{s}^{-1}]$	1	\rightarrow 10
Normalised Emittance $[\mu m]$	$3.75 \rightarrow 2$	50 (16?)
IP beta function $\beta_{x,y}^*$ [m]	$0.1 \rightarrow 0.05$	0.032 (0.1?)
RMS IP beam size $\sigma_{x,y}^*$ [μ m]	$7.2 \rightarrow 3.7$	$7.2 \rightarrow 3.7$
Bunch Spacing [ns]	25	25
Bunch Population	2.2×10^{11}	$1 \rightarrow 4.0 \times 10^9$
Effective crossing angle		0.0

Machine Parameters

 $\mathsf{baseline} \to \mathsf{hi}\text{-}\mathsf{lumi} \ \mathsf{upgrade}$

	Protons	Electrons
Beam Energy [GeV]	7000	60
Luminosity $[10^{33} \text{ cm}^{-2} \text{s}^{-1}]$	1 ightarrow 10	
Normalised Emittance $[\mu m]$	$3.75 \rightarrow 2$	50 (16?)
IP beta function $\beta_{x,y}^*$ [m]	$0.1 \rightarrow 0.05$	0.032 (0.1?)
RMS IP beam size $\sigma_{x,y}^*$ [μ m]	$7.2 \rightarrow 3.7$	$7.2 \rightarrow 3.7$
Bunch Spacing [ns]	25	25
Bunch Population	2.2×10^{11}	$1 \rightarrow 4.0 \times 10^9$
Effective crossing angle	0.0	

- HERA luminosity: 10^{31} (HERA I) upgraded to 4×10^{31} (HERA II) \to 10^{33} is already a HUGE improvement,
- 10^{34} allows to collect $\sim 1000~{\rm fb^{-1}}$ necessary to study the Higgs in many channels in presence of kinematic cuts ($\sigma_{e+p\to H+X}\approx 200~{\rm fb}$).

Overview of the Machine Sections

Two Superconducting Linacs

Each 1 km long, providing 10 GeV acceleration.

Arcs - Flexible Momentum Compaction

- 1 km radius for all of them,
- Same arrangement for each arc to simplify the installation in the tunnel,
- Tunable cells:
 - Highest energy arcs are tuned to minimize the energy spread induced by synchrotron radiation (quantum excitation),
 - Lowest energy arcs are tuned to contain the beam size and compensate for the bunch lengthening.

Very effective design verified with tracking simulations!

Interaction Region

• The electron beam goes across the Q1 ightarrow delicate magnet design with a vanishing-field region and high radiation flux.

Interaction Region

• The electron beam goes across the Q1 ightarrow delicate magnet design with a vanishing-field region and high radiation flux.

Interaction Region

- The electron beam goes across the Q1 ightarrow delicate magnet design with a vanishing-field region and high radiation flux.
- Proton β^* smaller than in Atlas/CMS \rightarrow can be achieved with the telescopic squeeze? (Extendended ATS optics, E. Cruz)

Machine detector interface: many open issues and parameters to be defined.

Detector Studies

- Forward / backward asymmetry reflecting beam energies (870 mm offset)
- Dipole for head-on e-p collisions and central solenoid in common cryostat
- Present size fits inside 14 m x 9 m (fits inside the solenoid from the L3 LEP experiment)

Beam Physics and Dynamics

End-to-end Optics

PLACET2 extracts the optics parameters from the particles distribution. A test bunch is followed from the injector to the dump. Basic validation of the setup.

Notable: the energy loss due to synchrotron radiation in Arc 6, the different average β in the arcs, 11/22the recovery of the mismatch generated in the linacs.

Beam at the IP

Higgs Factory Parameters - $L = 10^{34} \text{ cm}^{-2} \text{s}^{-1}$

Injection/Dump Energy Bunch Spacing Particles per bunch $4 \times 10^9 = 640 \,\mathrm{pC}$ Normalised RMS Emittance IP β function

500 MeV 25 ns $50 \, \mu m$ 0.032 m

Longitudinal phase space at IP

	initial/CDR	ΙP
$arepsilon_{x} \; [\mu m]$	50	57.4
$arepsilon_{m{y}}$ [μ m]	50	50.8
δ	0.0020	0.0026
$RMS \times [\mu m]$	7.20	7.66
RMS y $[\mu m]$	7.20	7.21
RMS z [mm]	0.600	0.601
RMS e [MeV]	-	15.4

- The beam at the IP maintains a very good quality, still need to verify imperfections and stability:
- The acceleration mitigates many effects, but the deceleration amplifies

Beam-Beam Effect

Effect of the proton beam on the electron beam with the high lumi parameters:

Tails are folded back, but the core is disrupted.

Beam-Beam Effect

Tails are folded back, but the core is disrupted.

Beta [mm]	Waist [mm]	Luminosity [10³³cm-²s-1]
120	0	8.1
120	45	9.6
39	45	9.8

Longitudinal Phase Space at Dump

Short Range Wake Fields + Synchrotron Radiation:

Big energy spread from quantum excitation, optics and sr wake effect masked!

Transverse Plane at Dump

The electron beam can be decelerated to the dump in all the cases considered.

Losses are very limited for an iris radius of the cavity > 50 mm.

Transverse Plane at Dump

The electron beam can be decelerated to the dump in all the cases considered.

Losses are very limited for an iris radius of the cavity > 50 mm.

The proton beam is much less perturbed:

- Limited tune shift: 6×10^{-4} ,
- Emittance growth (target < 10%/day), sensitive the offset between the two beams at collision \to max jittering: 0.01 σ
 - Feedback requirements investigated for both the beams.

Long Range Wakefields and Beam Break Up

- Bunches entering the radio frequency cavities excite higher order modes of oscillation of the field (HOMs intensity α ω³),
- Bunches coming later are kicked by the excited modes, exciting even more the ones in the next cavities.
- Dipolar modes are particularly strong and can amplify the beam jitter and, in the worst case, cause beam loss.

- Fill the machine with perfectly centred bunches.
- Inject a bunch with some offset.
- Keep injecting perfect bunches and see how they are perturbed.
- Without feedforward the excitation from beam-beam is felt during the deceleration!

FCC-he

FAQ:

Collisions between protons in the LHC and electrons in the FCC-ee?

FAQ:

Collisions between protons in the LHC and electrons in the FCC-ee?

Not an option!

- Many additional constraints (none of the beams is easily bent).
- Vertical separation (FFC goes below lake Geneva).
- LHC will be at the end of its lifetime.

FAQ:

Collisions between protons in the LHC and electrons in the FCC-ee?

Not an option!

- Many additional constraints (none of the beams is easily bent).
- Vertical separation (FFC goes below lake Geneva).
- LHC will be at the end of its lifetime.

The FCC-he is for now envisioned as an ERL-based electron facility coupled to the FCC-hh \rightarrow reuse the LHeC design profiting from the higher energy of the proton beam.

FCC-hh key parameters

	Baseline	Ultimate
CMS energy [TeV]	100 100	
Luminosity [10 ³⁴ cm ⁻² s ⁻¹]	5	20
Bunch distance [ns]	25	(5)
Background events/bx	170 (34)	680 (136)
Bunch charge [10 ¹¹]	1 (0.2)	
Norm. emitt. [µm]	2.2(0.44)	
RMS bunch length [cm]	8	
IP beta-function [m]	1.1	0.3
IP beam size [μm]	6.8 (3)	3.5 (1.6)
Max ξ for 2 IPs	0.01 (0.02)	0.03

- Two main and two additional experiments
- Use dipole magnets of up to 16 T \rightarrow 80% dipole filling factor in arcs \rightarrow 82km of arcs
- Current baseline: C=99.971 km (3.75 times the LHC)

- Need to review the length of the ERL \rightarrow adjust to C/11.
- Some luminosity lost due to the FCC-hh filling pattern (80 % filled).

A Baseline for the FCC-he

Oliver Brüning Max Klein Max Klein Pellegrini Daniel Schulte Rrank Zimmermann CERN, University of Liverpool

Table 1: Baseline parameters and estimated peak luminosities of future electron-proton collider configurations for the electron ERL when used in concurrent ep and pp operation mode.

parameter [unit]	LHeC CDR	ep at HL-LHC	ep at HE-LHC	FCC-he
E_p [TeV]	7	7	12.5	50
E_e [GeV]	60	60	60	60
\sqrt{s} [TeV]	1.3	1.3	1.7	3.5
bunch spacing [ns]	25	25	25	25
protons per bunch [10 ¹¹]	1.7	2.2	2.5	1
$\gamma \epsilon_p \ [\mu \mathrm{m}]$	3.7	2	2.5	2.2
electrons per bunch [10 ⁹]	1	2.3	3.0	3.0
electron current [mA]	6.4	15	20	20
IP beta function β_p^* [cm]	10	7	10	15
hourglass factor H_{qeom}	0.9	0.9	0.9	0.9
pinch factor H_{b-b}	1.3	1.3	1.3	1.3
proton filling H_{coll}	0.8	0.8	0.8	0.8
luminosity $[10^{33} \text{cm}^{-2} \text{s}^{-1}]$	1	8	12	15

 $1 \, ab^{-1}$ of data is a realistic goal for a decade of operation.

A deeper look into FCC-he

Tune shift flattening by controlled emittance blow-up:

A deeper look into FCC-he

Tune shift flattening by controlled emittance blow-up:

FCC-he prefers the baseline proton parameters: slower proton burning \rightarrow longer fills \rightarrow more ep collision time.

Ultimate parameters foresee smaller emittance and $\beta^* \to$ shorter fills, impact on integrated luminosity, but mostly ok.

Bigger impact on lumi if FCC-hh goes from 25 to 5 ns spacing (bunch intensity $1 \rightarrow 0.2 \times 10^{11}$) to reduce pileup.

Need to compute performances taking into account evolving emittances, pinch from beam-beam...

A deeper look into FCC-he

Tune shift flattening by controlled emittance blow-up:

FCC-he prefers the baseline proton parameters: slower proton burning \rightarrow longer fills \rightarrow more ep collision time.

Ultimate parameters foresee smaller emittance and $\beta^* \to$ shorter fills, impact on integrated luminosity, but mostly ok.

Bigger impact on lumi if FCC-hh goes from 25 to 5 ns spacing (bunch intensity $1 \rightarrow 0.2 \times 10^{11}$) to reduce pileup.

Need to compute performances taking into account evolving emittances, pinch from beam-beam...

See FCC-he by D. Schulte, FCC Week, Rome, 2016.

Conclusions

The LHeC is...

- a unique opportunity to realise ep and e-ion physics at the TeV energy scale,
- an innovative large-scale accelerator with massive return of technology,
- an occasion to fully exploit the LHC infrastructure,
- a new installation with a potential user community beyond HEP and LHeC itself.
- Can become the FCC-ee injector and later be coupled to FCC-hh for increased centre of mass energy.
- Basically complete ERL design available:
 - excellent performances from simulations,
 - but need to demonstrate the high current operation and find precise limits and tolerances.
 - challenging machine detector interface.

Outlook

Outstanding machine-related issues:

- IR layout finalization with SR power optimization,
- IR optics design with integration into HL-LHC ATS optics,
- SC IR magnet,
- SC RF development,
- ERL demonstration with high current (> 10 mA) & multi-turn (\geq 3).

Next step: ERL demonstrator!

- PERLE: CDR will be published soon,
- Possible Orsay-CERN effort.

Thank you!

http://lhec.web.cern.ch

Ring-Ring | Linac-Ring

- Basically "LEP 1.5": we know that we can do it!
- Positrons can be easily provided for collisions,
- $\stackrel{ }{ }$ Maximum luminosity limited by synchrotron radiation (100 MW for $L=5\times 10^{33}~{\rm cm^{-2}~s^{-1}}$ @ 60 GeV),
- Conflicts with LHC devices (Atlas, CMS, RF section, extraction kickers...),
- installation requires some years of LHC shutdown.

Ring-Ring | Linac-Ring

- Basically "LEP 1.5": we know that we can do it!
- Positrons can be easily provided for collisions,
- $\stackrel{\cdot \cdot \cdot}{\cdot \cdot}$ Maximum luminosity limited by synchrotron radiation (100 MW for $L=5\times 10^{33}~{\rm cm}^{-2}~{\rm s}^{-1}$ @ 60 GeV),
- Conflicts with LHC devices (Atlas, CMS, RF section, extraction kickers...),
- installation requires some years of LHC shutdown.

- Mostly decoupled facility (only IR is in common),
- More compact,
- Similar if not higher luminosity,
- Much less experience with construction and operation tolerances (exciting for scientists, worrisome for management),
- No adequate positron sources,
 - Many superconductive components (need for cryo installation),

Ring-Ring | Linac-Ring

- Basically "LEP 1.5": we know that we can do it!
- Positrons can be easily provided for collisions,
- $\stackrel{\cdot \cdot \cdot}{\cdot \cdot}$ Maximum luminosity limited by synchrotron radiation (100 MW for $L=5\times 10^{33}~{\rm cm}^{-2}~{\rm s}^{-1}$ @ 60 GeV),
- Conflicts with LHC devices (Atlas, CMS, RF section, extraction kickers...),
- installation requires some years of LHC shutdown.

- Mostly decoupled facility (only IR is in common),
- More compact,
- Similar if not higher luminosity,
- Much less experience with construction and operation tolerances (exciting for scientists, worrisome for management),
- No adequate positron sources,
- Many superconductive components (need for cryo installation),

The Linac-Ring was selected as baseline.

Continuous Wave (CW) operation

- New/spent bunches are continuously injected/dumped,
- In the linacs bunches at different turn numbers and energies are interleaved,
- Gap for ion cleaning requires an integer fraction of the LHC length $(1/3) \rightarrow$ protons bunches collide at every turn or never.

◆ロト 4個ト 4 至ト 4 至ト 至 回 り へ ()

LHC bunch spacing requires bunch spacing with multiples of 25ns (40.079 MHz). Available designs:

SPL & ESS: 704.42 MHz

ILC & XFEL: 1.3 GHz

Both off by 20 MHz compared to LHC harmonics

LHC bunch spacing requires bunch spacing with multiples of 25ns (40.079 MHz). Available designs:

- SPL & ESS: 704.42 MHz
- ILC & XFEL: 1.3 GHz

Both off by 20 MHz compared to LHC harmonics.

- Optimum frequency at 2 K between 300 MHz and 800 MHz
- Lower T shift optimum f upwards

LHC bunch spacing requires bunch spacing with multiples of 25ns (40.079 MHz). Available designs:

- SPL & ESS: 704.42 MHz
- ILC & XFEL: 1.3 GHz

Both off by 20 MHz compared to LHC harmonics.

Chose 801 MHz (h=20) for bucket matching in the LHC and for synergies with FCC.

- Optimum frequency at 2 K between 300 MHz and 800 MHz
- Lower T shift optimum f upwards

LHC bunch spacing requires bunch spacing with multiples of 25ns (40.079 MHz). Available designs:

- SPL & ESS: 704.42 MHz
- ILC & XFEL: 1.3 GHz

Both off by 20 MHz compared to LHC harmonics.

Chose 801 MHz (h=20) for bucket matching in the LHC and for synergies with FCC.

Almost equal bunch spacing in the linac (bucket filling adjusted with arc length).

- Optimum frequency at 2 K between 300 MHz and 800 MHz
- Lower T shift optimum f upwards

LHC bunch spacing requires bunch spacing with multiples of 25ns (40.079 MHz). Available designs:

- SPL & ESS: 704.42 MHz
- ILC & XFEL: 1.3 GHz

Both off by 20 MHz compared to LHC harmonics.

Chose $801\,\mathrm{MHz}$ (h=20) for bucket matching in the LHC and for synergies with FCC.

Almost equal bunch spacing in the linac (bucket filling adjusted with arc length).

- Optimum frequency at 2 K between 300 MHz and 800 MHz
- Lower T shift optimum f upwards

Max separation between the bunches at 1st and 6th turn to mitigate wakefields.

Spreading Sections

- Provide vertical separation while matching each beam from the linac to the right arc;
- Integrate chicanes for path length adjustment, and 1600 MHz RF compensating sections for synchrotron radiation losses;
- New single step design developed to mitigate synchrotron radiation and limit the peak β .

Beam dynamics overview

Assessed with extensive tracking simulation

Single particle/single bunch effects:

- Synchrotron Radiation:
 - 750 MeV are lost in arc 6.
 - induced energy spread (quantum excitation).
- Beam-Beam effect:
 - Disruption of the electron beam (still need to be decelerated),
 - Stability of the proton beam (impact on the other LHC experiments).
- Short range wakefields and impedances:
 - · energy spread and emittance growth.

Multi bunch effects:

- Long range wakefields (excitation of higher order modes in the cavities),
- Ion cloud build up (preliminary estimations in the CDR, seems ok but needs to be reviewed)

Simulation tool

Tracking particle beams in recirculating machines is hard!

- Beam goes through the same elements a few times,
- At each turn new bunches are added and some removed,
- Neither ring nor linac codes are fully suited.

Multibunch tracking in the ERL performed with the recently developed PLACET2 tracking code, from CLIC.

- Determines path of the bunches based on flexible criteria,
- Can merge bunches into trains, preserving the time order in each part of the machine,
- Can handle time dependences all around the machine.

Longitudinal Phase Space at Dump (I) Optics only:

Non perfect isochronicity together with the RF curvature.

Longitudinal Phase Space at Dump (II)

Short Range Wake Fields:

Second harmonic RF losses compensation (no RF curvature from it).

Civil Engineering

IP

Shafts

Ongoing discussion about installation, point 2 is the current first choice (point 8 also considered):

- Easy placement of the shafts close to the Meyrin and Prevessin CERN sites.
 - Good geology: molasse-morain,
- Separation from the LHC granted by the tilt of the LHC tunnel.

Unifying LHeC, FCC-ee injector and FCC-he?

A single machine may do it all

