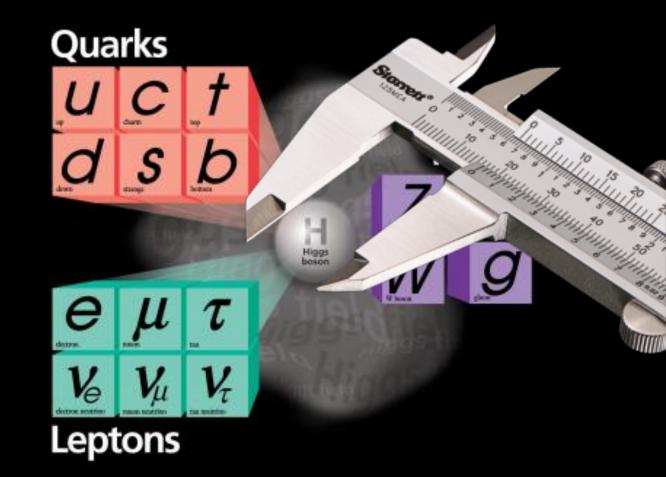


Status of the LHC Higgs Cross Section Working Group

Pierre Savard
University of Toronto and TRIUMF


Higgs Days is Santander 19 September 2016

OUTLINE

Introduction

- Summary of YR4
 - Inputs
 - •PDFs
 - Branching Ratios
 - •ggF
 - •VBF/VH
 - •TTH/TH
 - Properties, POs, EFTs
 - •BSM
- Next Steps

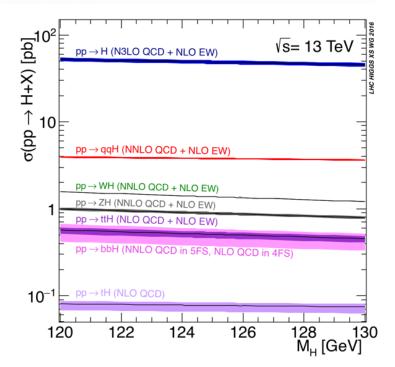
Conclusions

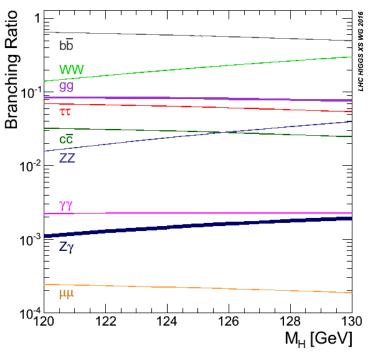
INTRODUCTION

Yellow Report 4 "Deciphering the Nature of the

Higgs Sector" is under final review

- •A big effort:
 - •Covers:
 - SM production and decays
 - Higgs properties
 - BSM Higgs
 - •3 years after YR3
 - •869 pages, 248 tables, 292 figures, 1636 citations
 - •Please read and post comments:
 - Link: https://cds.cern.ch/record/2215893
 - Deadline: Friday Sept 30th
- Previous Yellow Reports
 - Inclusive Observables (2011, ~150pp)
 - Differential Distributions (2012, ~275pp)
 - Higgs Properties (2013, ~400pp)

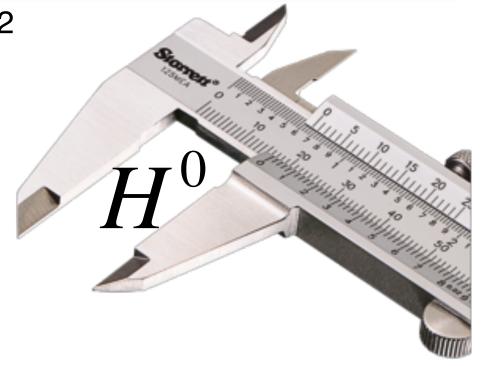




INTRODUCTION

The LHC Higgs XS WG undergoing an important transition:

- •Yellow Report 4 is going out. Solid foundation for first "high stats" Run 2 papers
- •Run 2 is off to a good start:
 - •We will have ~35 fb-1 of data at 13 TeV this year
 - •By the end of Run 2 (in 2 years, we should have ~>120 fb-1
- •First papers with full 2016 dataset will be coming out in Spring and Summer
 - Focus the group on shorter term tasks to address issues associated with 2016 dataset papers
 - Plan for the medium term: determine what we need to best exploit the full Run 2 dataset
 - •Plan for the long term: Run 3 and HL-LHC


SM HIGGS BOSON PHYSICS

SM and interpretations under WG1 and WG2

- •Main inputs for couplings (σ^*BR):
 - Main production modesggH, WH, ZH, VBF, ttH
 - Main decay modes:

•γγ, WW, ZZ, tt, bb

- Fiducial and differential measurements
- Interpret measurements above
 - •Kappa framework, CP-mixing, EFT
- •Rare production modes:
 - •tH, hh, bbH
- •Rare Decay modes:
 - •μμ, **Z**γ, **J**/ψ γ
- •Width
 - •Direct, off-shell couplings, interference, lifetime
- Precision mass measurements

YR4 INPUTS (AND OUTPUTS)

SM input parameters:

<u>e</u>	F	Ī	
0.510998928(11) MeV	105.6583715(35) MeV	1776.82(16) MeV	
u	С	t	
100 MeV	0.986 ± 0.026 GeV	172.5 ± 1.0 GeV	
d	S	b	
100 MeV	100 MeV	4.18 ± 0.03 GeV	

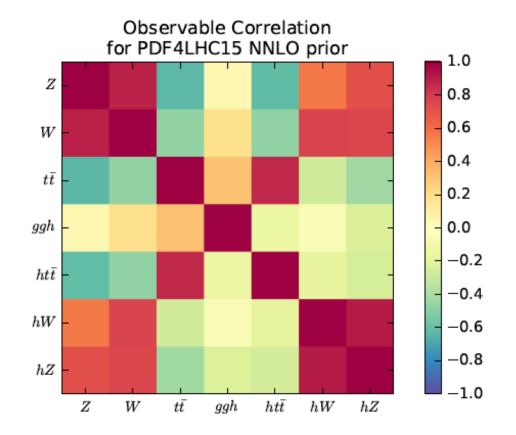
$$\alpha_s(m_Z) = 0.118 \pm 0.0015$$

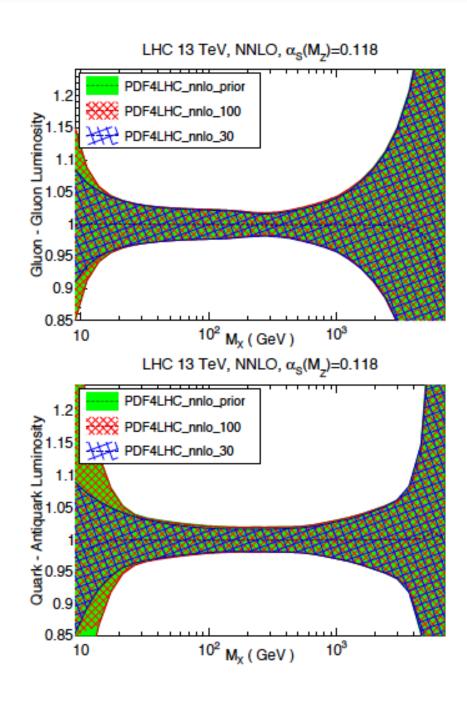
W	Mw	<u>Γ</u> _W
	80.385(15) GeV	2.085(42) GeV
Z	$\mathbb{M}_{\mathbb{Z}}$	ΓΖ
	91.1876(21) GeV	2.4952(23) GeV

- a. The top-quark mass is on-shell top-quark mass M_tOS. Corresponding MS-bar mass is M_tMS(M_t)=162.7±1.0 GeV.
- b. The bottom-quark mass is MS-bar bottom-quark mass M_bMS(M_b). Corresponding on-shell mass is M_bOS=4.92±0.13 GeV.
- c. The charm-quark mass is evaluated at M_c(3 GeV). On-shell charm-quark mass is M_cOS=1.51±0.13 GeV.

Output (theory uncertainties)

- XS ±Scale Uncertainty [%] ±THU [%] ±PU(quark-mass) [%] ±PU(α_s) [%] ±PDF Uncertainty [%]
- BR ±THU [%] ±PU(quark-mass) [%] ±PU(α_s) [%]


Correlate PUs between Higgs production and decays and PDFs between signal production modes and backgrounds


PDFs

PDF4LHC recommendations:

SM Higgs PDF4LHC15_100 set BSM Higgs PDF4LHC15_mc set

Updated correlations

FROM (F. CAOLA, HIGGS HUNTING)

Charting the progress

Process	~ 15 y ago	Now	What we want
ggH	towards NNLO _{inc}	N³LO _{inc} , NNLOPS, NNLL	N³LO(PS) +small details
VBF	NLO	N ³ LO _{inc} , NNLO	N³LO
VH	NLO	NNLO	gg→VH@NLO
ttH	LO	NLO	NNLO?
Hj	NLO	NNLO	mass effects
Hjj	LO	NLO	NNLO
рр⇒γγ	NLO	NNLO+gg@NLO	//
pp→VV	NLO	NNLO+gg@NLO	gg@NLO massive

- Many of the desiderata require significant theory improvements
- Nevertheless, given the trend: FAR FROM IMPOSSIBLE
- Quite remarkable precision ALREADY NOW

GGH

NNNLO calculation:

$$\sigma = 48.58\,\mathrm{pb}_{-3.27\,\mathrm{pb}\,(-6.72\%)}^{+2.22\,\mathrm{pb}\,(+4.56\%)}\,\mathrm{(theory)} \pm 1.56\,\mathrm{pb}\,(3.20\%)\,\mathrm{(PDF+}\alpha_s)\,.$$

$$48.58 \,\mathrm{pb} = 16.00 \,\mathrm{pb} \quad (+32.9\%) \quad (LO, rEFT) \\ + 20.84 \,\mathrm{pb} \quad (+42.9\%) \quad (NLO, rEFT) \\ - 2.05 \,\mathrm{pb} \quad (-4.2\%) \quad ((t, b, c), \,\mathrm{exact}\,\,\mathrm{NLO}) \\ + 9.56 \,\mathrm{pb} \quad (+19.7\%) \quad (NNLO, rEFT) \\ + 0.34 \,\mathrm{pb} \quad (+0.7\%) \quad (NNLO, 1/m_t) \\ + 2.40 \,\mathrm{pb} \quad (+4.9\%) \quad (EW, QCD-EW) \\ + 1.49 \,\mathrm{pb} \quad (+3.1\%) \quad (N^3LO, rEFT)$$

Discussion on the uncertainty, two scenarios:

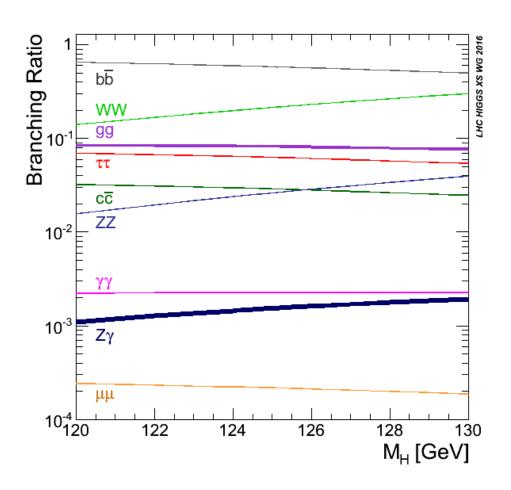
F-uncertainty: [-6.7, +4.6]% corresponding to [-3.3, +2.2] pb

G-uncertainty: $\pm 4.5\%$ corresponding to ± 2.2 pb

Current recommendation is to use flat uncertainty

In cases where a Gaussian uncertainty is preferred, Use 2*max(pos,neg)/sqrt(12): $\Delta_{\rm th} = \pm 3.9\%$.

Should try to be consistent in calculations


BRANCHING RATIOS

Setup unchanged: HDECAY and Prophecy4f to calculate the Higgs partial widths at the highest accuracy

$$\Gamma_{H} = \Gamma^{HDECAY} - \Gamma^{HDECAY}_{ZZ} - \Gamma^{HDECAY}_{WW} + \Gamma^{Prophecy4f}_{4f}$$

New in YR4:

- •Improvements in HDECAY (NLO EW corrections for H→fermions, MSbar scheme for quark masses)
- •Input parameters (α_S , mb, mc, mt) revisited
- Updated theoretical uncertainties
 - •BR central values are well within the YR3 error estimates
 - Uncertainties reduced considerably

BRANCHING RATIOS

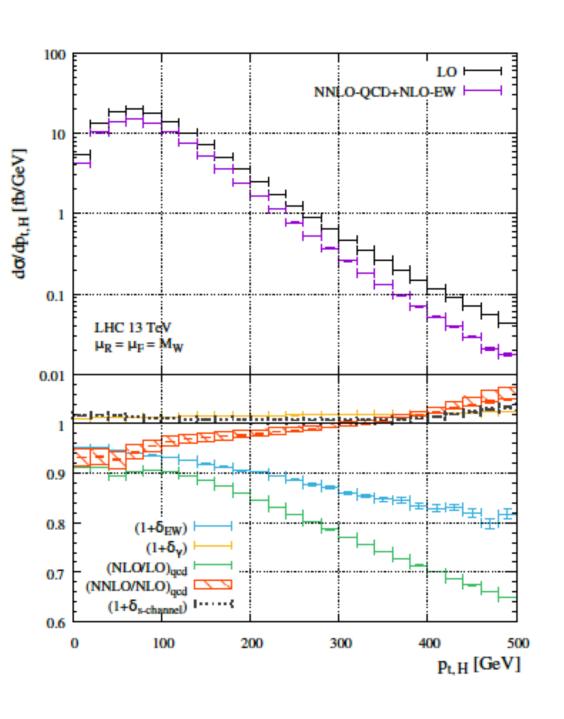
From Daniela Rebuzzi:

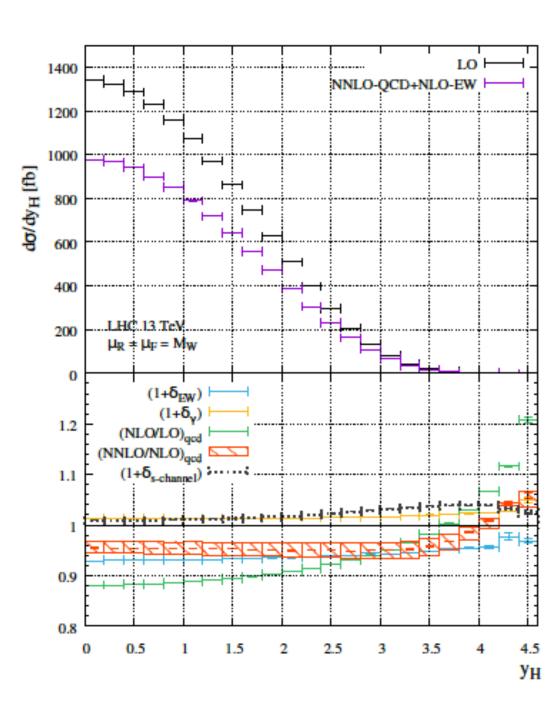
• Full EW NLO corrections now included in HDECAY

	Process	Uncertainty	Total
	$H \rightarrow bb/cc$	QCD 0.1-0.2%	1-2%
3		EW 1-2% for $M_H \le 135$ GeV	
0	$H \rightarrow \tau \tau$	EW 1-2%	1-2%
=	$H \rightarrow WW/ZZ \rightarrow 4f$	EW 0.5% for M _H <500 GeV	0.5-15%
		$\sim 0.17 \cdot (M_H/1 \text{ TeV})^4 \text{ for } M_H > 500 \text{ GeV}$	
	$H \rightarrow t\bar{t}$	QCD < 5% (only NLO mass effects)	5-10%
0		EW $\sim 2\%$ for $M_H < 500$ GeV	
$\overline{}$		$\sim 0.1 \cdot (M_H/1 \text{ TeV})^4 \text{ for } M_H > 500 \text{ GeV}$	
\mathbf{O}	$H \rightarrow gg$	QCD ~ 10% (only NNLO included in HDECAY)	$\sim 10\%$
		EW ∼ 1%	
	$H \rightarrow \gamma \gamma$	QCD+EW ~ 1%	~ 1%

	Partial width	QCD	EVV	Total
4	$H \rightarrow b\bar{b}/c\bar{c}$	~ 0.2%	\sim 0.5% for $M_H <$ 500 GeV	~ 0.5%
2	$H ightarrow au au/\mu \mu$		\sim 0.5% for $M_H <$ 500 GeV	$\sim 0.5\%$
>	$H \rightarrow WW/ZZ \rightarrow 4f$	< 0.5%	$\sim 0.5\%$ for $M_H < 500$ GeV	$\sim 0.5\%$
-	$H o t \bar t$	≤ 5%	$\sim 0.5\%$ for $M_{H} < 500$ GeV	\sim 5 %
S	H o gg	\sim 3%	$\sim 1\%$	\sim 3.2%
Ť	$H ightarrow \gamma \gamma$	< 1%	$\sim 1\%$	$\sim 1\%$
	$H o Z\gamma$	< 1%	~ 5%	$\sim 5\%$

VBF


VBF Process


- Cross sections are calculated at (approx.) NNLO QCD and NLO EW accuracies.
- Calculations are the same as CERN Report 3, except it is in NWA (CPS in CERN Report 3).
- Program: NNLO QCD (VBF@NNLO) and NLO EW (HAWK).
- QCD scales: μ=μ_F=μ_R=M_W, uncertainty estimated in the range 1/2 < μ/M_W < 2 (keeping μ_F=μ_R).
 - No additional THU nor PU uncertainties assigned.
- PDF set: PDF4LHC15_nnlo_100 (QCD corrections) and NNPDF2.3QED (EW corrections + photon PDF)

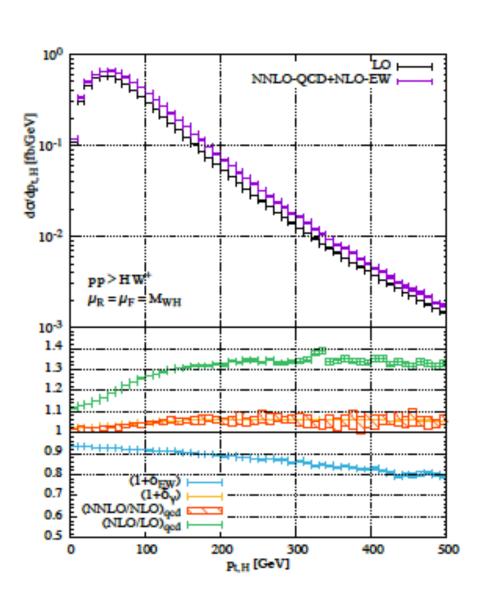
$$\sigma^{\text{VBF}} = \sigma_{\text{NNLOQCD}}^{\text{DIS}} (1 + \delta_{\text{EW}}) + \sigma_{\gamma}$$

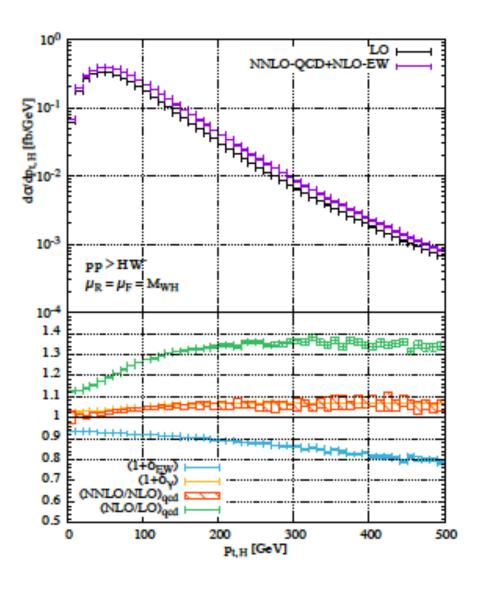
\sqrt{s} [GeV]	$\sigma^{ m VBF}$ [fb]	$\Delta_{\rm scale} [\%]$	$\Delta_{\mathrm{PDF}/\alpha_{\mathrm{s}}/\mathrm{PDF} \oplus \alpha_{\mathrm{s}}} [\%]$	$\sigma_{ m NNLOQCD}^{ m DIS}[{ m fb}]$	$\delta_{\rm EW} [\%]$	σ_{γ} [fb]	$\sigma_{s\text{-channel}}[\text{fb}]$
7	1241.4(1)	+0.19 -0.21	$\pm 2.1/\pm 0.4/\pm 2.2$	1281.1(1)	-4.4	17.1	584.5(3)
8	1601.2(1)	+0.25 -0.24	$\pm 2.1/\pm 0.4/\pm 2.2$	1655.8(1)	-4.6	22.1	710.4(3)
13	3781.7(1)	+0.43 -0.33	$\pm 2.1/\pm 0.5/\pm 2.1$	3939.2(1)	-5.3	51.9	1378.1(6)
14	4277.7(2)	+0.45 -0.34	$\pm 2.1/\pm 0.5/\pm 2.1$	4460.9(2)	-5.4	58.5	1515.9(6)

VBF

VH

- •EW correction O(-7)% for WH and O(-5)% for ZH
- •Photon-induced process O(3-4)%
- •Larger gg→ZH contribution (14%@13TeV) at higher Ecm
 - Larger QCD scale uncertainty compared to lower Ecm and WH

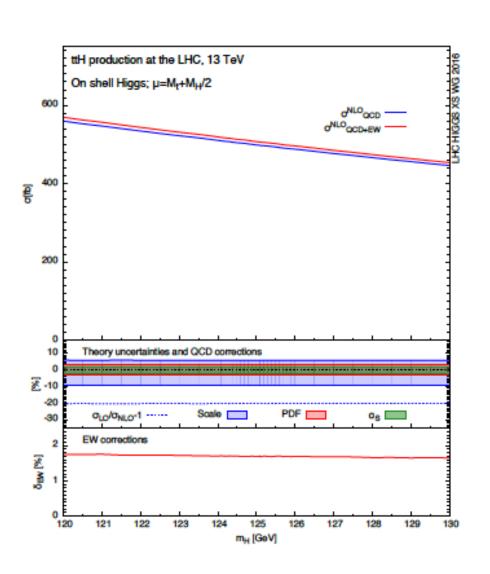

$$\begin{split} \sigma^{\mathrm{WH}} &= \sigma^{\mathrm{WH,DY}}_{\mathrm{NNLOQCD}}(1+\delta_{\mathrm{EW}}) + \sigma_{\mathrm{t\text{-}loop}} + \sigma_{\gamma}, \\ \sigma^{\mathrm{ZH}} &= \sigma^{\mathrm{ZH,DY}}_{\mathrm{NNLOQCD}}(1+\delta_{\mathrm{EW}}) + \sigma_{\mathrm{t\text{-}loop}} + \sigma_{\gamma} + \sigma^{\mathrm{ggZH}} \end{split}$$


\sqrt{s} [GeV]	σ[fb]	$\Delta_{\rm scale} [\%]$	$\Delta_{\mathrm{PDF}/\alpha_{\mathtt{s}}/\mathrm{PDF} \oplus \alpha_{\mathtt{s}}} [\%]$	$\sigma_{\rm NNLOQCD}^{\rm DY}[{\rm fb}]$	$\sigma_{\text{t-loop}}[\text{fb}]$	$\delta_{\rm EW} [\%]$	σ_{γ} [fb]
7	40.99	+0.7 -0.9	$\pm 1.9/ \pm 0.7/ \pm 2.0$	42.78	0.42	-7.2	$0.88^{+1.10}_{-0.10}$
8	49.52	$^{+0.6}_{-0.9}$	$\pm 1.8/\pm 0.8/\pm 2.0$	51.56	0.53	-7.3	$1.18^{+1.38}_{-0.14}$
13	94.26	+0.5 -0.7	$\pm 1.6/\pm 0.9/\pm 1.8$	97.18	1.20	-7.4	$3.09^{+3.33}_{-0.37}$
14	103.63	$^{+0.3}_{-0.8}$	$\pm 1.5/\pm 0.9/\pm 1.8$	106.65	1.36	-7.4	$3.55^{+3.72}_{-0.43}$

$\sqrt{s}[\text{GeV}]$	σ [fb]	$\Delta_{\rm scale} [\%]$	$\Delta_{\mathrm{PDF}/\alpha_{\mathbf{z}}/\mathrm{PDF}\oplus\alpha_{\mathbf{z}}}[\%]$	$\sigma_{\rm NNLOQCD}^{\rm DY}[{\rm fb}]$	$\sigma_{ m NLO+NLL}^{ m ggZH}$ [fb]	$\sigma_{\text{t-loop}}[\text{fb}]$	$\delta_{\rm EW} [\%]$	σ_{γ} [fb]
7	11.43	$^{+2.6}_{-2.4}$	$\pm 1.6/\pm 0.7/\pm 1.7$	10.91	0.94	0.11	-5.2	$0.03^{+0.04}_{-0.00}$
8	14.18	$^{+2.9}_{-2.4}$	$\pm 1.5/\pm 0.8/\pm 1.7$	13.36	1.33	0.14	-5.2	$0.04^{+0.05}_{-0.00}$
13	29.82	$^{+3.8}_{-3.1}$	$\pm 1.3/\pm 0.9/\pm 1.6$	26.66	4.14	0.31	-5.3	$0.11^{+0.12}_{-0.01}$
14	33.27	+3.8 -3.3	$\pm 1.3/ \pm 1.0/ \pm 1.6$	29.47	4.87	0.36	-5.3	$0.12^{+0.13}_{-0.01}$

Differential distributions: (New for YR4)

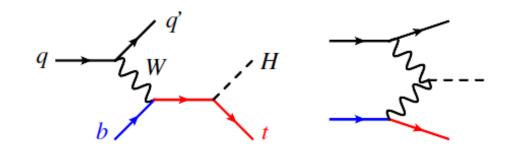
TTH

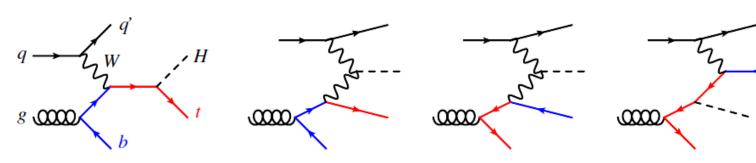

Cross sections are calculated at NLO QCD and NLO EW

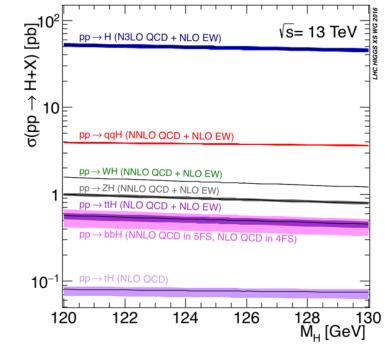
•NLO EW O(1-2)%, photon-induced negligible

Studies documented in YR4:

- Offshell effects in ttH production
- ttH beyond NLO
 - NLO + NLL soft-gluon resummation in partonic centre of mass limit
 aNNLO via soft-gluon resummation in the pair-invariant mass (PIM) threshold limit


SM backgrounds: ttbb(NLO QCD), ttV(NLO QCD+EW), ttVV(NLO QCD)

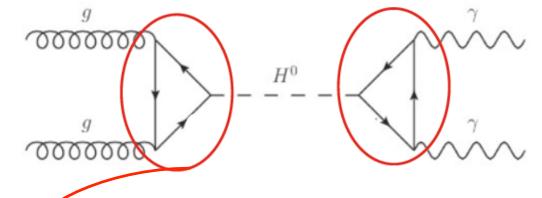



TH

NLO QCD calculation

- •s-channel
- •t-channel
 - •4 flavour-scheme
 - •5 flavour-scheme

$$\sigma(tH)^{\text{t-ch}}_{\text{TOT}} = 74.25 \, ^{\text{+6.5}\%}_{\text{-14.9}\%} \, (\text{scale,FS}) \\ \pm 3.7\% (\text{pdf},\alpha_{\text{S}}) \, \, \text{fb}$$


$$\sigma(tH)^{\text{s-ch}}_{\text{TOT}} = 2.879 \, ^{\text{+2.4\%}}_{\text{-1.8\%}} \, (\text{scale}) \\ \pm 2.2\% (\text{pdf},\alpha_{\text{S}}) \, \, \text{fb}$$

KAPPA FRAMEWORK

Updates to kappa framework:

•ggF

- •Change in central QCD scale from Mh (YR3) to Mh/2 (YR4).
- inclusion of charm quark
- change in quark-mass definition from on-shell mass in YR3

•YR3:
$$\kappa_g^2 = 1.058\kappa_t^2 + 0.007\kappa_b^2 - 0.065\kappa_t\kappa_b$$

•YR4: $\kappa_g^2 = 1.042\kappa_t^2 + 0.002\kappa_b^2 - 0.040\kappa_t\kappa_b - 0.005\kappa_t\kappa_c + 0.0005\kappa_b\kappa_c + 0.00002\kappa_c^2$

VBF

- •Cross sections are calculated in NNLO QCD with VBF@NNLO
- •QCD scales: μ=μF=μR=MW
- PDF set: PDF4LHC15_nnlo_30_pdfs

•gg->ZH

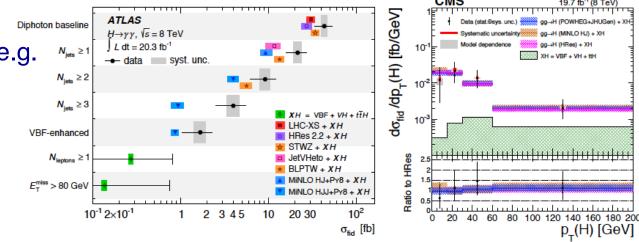
- Cross sections are calculated in LO QCD with VH@NNLO
- •QCD scales: $\mu = \mu F = \mu R = M_{ZH}$
- PDF set: PDF4LHC15_nnlo_mc

BEYOND THE K FRAMEWORK

The inputs to the kappa framework are σ^*BR measurements

With the increased statistics of Run 2, we can move beyond this framework to more sophisticated measurements and interpretations

WG2 has investigated expanding the measurement inputs and their interpretation:


- Template (simplified) cross sections
- Fiducial cross sections
- Pseudo-Observables
- Effective Field Theory (will be discussed later this week)
 - •YR4 provides definitions of the theory frameworks that can be used to extend the SM
 - •Discussion of the limitations that such effective descriptions have in describing different BSM physics scenarios (UV completions)
 - Tool development, including morphing techniques

FIDUCIAL AND TEMPLATE

Template (simplified) cross sections new in YR4. Progress on experimental side:

- •we have a first "generator independent" implementation of the stage-0 and stage-1 HTXS categorization.
- Code in the HXSWG SVN

- Fiducial and differential cross sections
 - Developed set of recommendations e.g.
 - Fiducial definitions
 - Unfolding of detector effects
 - Preservation of data
 - •Etc
 - Work to be done to perform combinations

BEYOND THE SM: WG3

No sign of physics beyond the SM yet where we have searched

- •Run 2 extends the search range with the higher LHC energy and increased integrated luminosity
- Important to make sure that the phase space if fully explored
 - Develop benchmarks
 - Plug holes in the search parameter space

A lot of work went into YR4 updating calculations, providing new benchmarks, tools, and investigating new BSM scenarios

- •MSSM
- NMSSM
- Neutral Extended Scalars
- Charged Higgs
- Exotic Decays

WG3: MSSM AND NMSSM

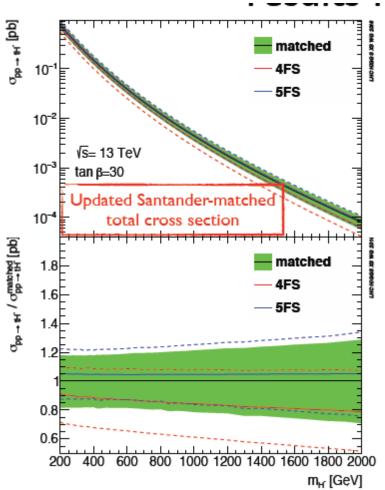
MSSM:

- •Provide files for various MSSM scenarios (now extended to 2 TeV in YR4)
- •Mh max, mh mod+/-, tauphobic, light stop, light stau
- •Scenarios for low tanβ: hMSSM, low-tanβ-high.

scenario	$m_A[{ m GeV}]$	$ anoldsymbol{eta}$	$\sqrt{s}[{ m TeV}]$	authors
"low-tb-high" hMSSM m_h^{\max}	150 - 500 $130 - 1000$ $90 - 2000$	0.5 - 10 $1 - 60$ $0.5 - 60$	8, 13 8, 13 13, 14	[Heinemeyer '15] [Maiani et al. '13; Djouadi et al. '13 '15] [Carena et al. '13]
$m_h^{\text{mod}+}, \mu \in \mu^{\text{val}}$	90 - 2000	0.5 - 60	8, 13, 14	[Carena et al. '13]
m_h^{mod} - light stau light stop $ au$ -phobic	90 - 2000 $90 - 2000$ $90 - 650$ $90 - 2000$	0.5 - 60 $0.5 - 60$ $0.5 - 60$ $0.5 - 50$	13, 14 13, 14 13, 14 13, 14	[Carena et al. '13] [Carena et al. '13] [Carena et al. '13] [Carena et al. '13]

NMSSM

- •Provided details of calculations, discussed uncertainties, and tools
- Categorized NMSSM-specific signatures:
 - Direct H125 production and decays
 - •Direct light H_S/A_S production and decays
 - Direct H/A production and decays
 - •Higgs bosons in squark/gluino/chargino/neutralino decays, singlino-like LSP
 - Displaced vertices
- 9 benchmarks provided


WG3: H+, EXTENDED SCALARS

Charged Higgs:

- •Charged Higgs chapter in YR4 focuses on predictions for heavy charged Higgs
 - Updated Santander-matched predictions
 - •Fully differential simulation in the 4FS and comparison with 5FS
- •First NLO computation of charged Higgs cross section in the intermediate-mass range
- •Reduction of scale uncertainties down to 10-20% (were 40% at LO)

Extended Neutral Scalars:

- •2HDM, singlet, GM triplet: concrete recommendations
- •Numbers and benchmarks for all these. Many benchmarks...
 - Useful to make sure we cover search phase space
 - Unclear what will be used by the experiments

WG3: RARE AND EXOTIC DECAYS

Exotic decays

•New group has established good theory/experiment interactions, productive interactions with experiments regarding triggers

For YR4

- •Recommended BRs for SM exclusive mesonic modes (M)
 - •h->γM , h->MZ, MW
 - Experimental status and prospects
 - •Theoretical survey of models yielding enhanced rates
 - exclusive mesonic branching fractions
- General recommendations for exotic searches
 - presentation of search results
 - signal event generation
 - •Study of parton-level kinematics for h->aa (ss)->4f
 - •Feasibility study for semi-invisible h 2γ + MET
 - •Benchmarks and recommendations for displaced decays

UPCOMING MEETING

The next general meeting will be October 12 to 14, 2016 at CERN

The indico page can be found at:

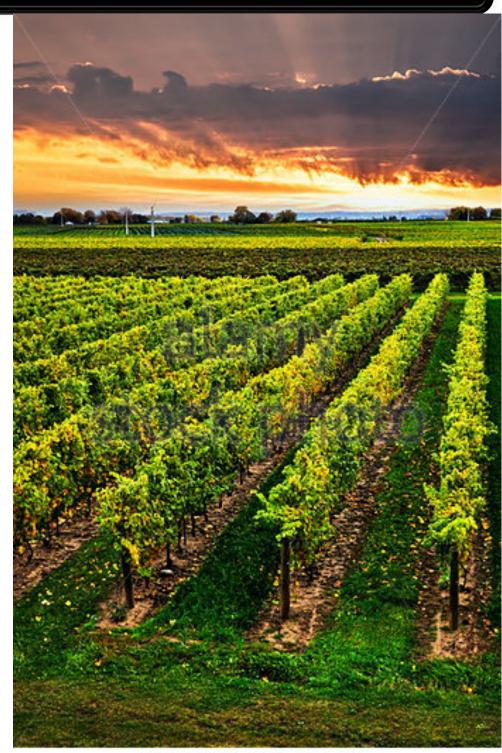
http://indico.cern.ch/event/555360/

Please register and arrange your trip as soon as possible

A preliminary agenda is under construction

- Discuss shorter term goals for the analysis of the 2016 dataset
- Discuss medium term goals for the analysis of the full Run 2 dataset
- Discuss long term goals (Run3 and HL-LHC)

Your feedback and suggestions during this workshop will be very much appreciated


LHC HXSWG ORGANIZATION

After discussions with community and management of ATLAS and CMS:

- •Preserve existing structure but improve communication by assigning steering committee members to follow the activities of a WG closely and communicate on regular basis with the conveners
- Opportunity to revise structure in the coming year if further changes are needed
- Current structure
 - Steering committee
 - •3 Working Groups
 - •SM Higgs
 - Higgs Properties
 - •BSM
 - Subgroups
 - •Keep current set but can add new groups, de-activate/re-activate subgroups based on needs at a given time

CONCLUSIONS

- Yellow Report 4 is under final review and will be out very soon
 - •Reference for the first Run 2 publications
- •A lot of data will be collected in the next 2 years
 - •Strong theory/experiment collaboration necessary to fully exploit the physics potential
 - Many open issues following YR4
 - identify and work on high priority items
 - Continue working on longer term projects
- Your feedback, suggestions, ideas are most welcome

Backup Slides