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The MSSM Higgs sector in light of precision Higgs data

The observed Higgs boson at 125 GeV is SM-like (to within roughly an

accuracy of 20%). The common wisdom is that this observation implies

that additional Higgs states of the MSSM Higgs sector must be rather heavy

(corresponding to the decoupling limit).

Indeed, ATLAS has claimed to rule out mA <∼ 400 GeV based on Run 1

precision Higgs data. But, one needs to be careful about the underlying

assumptions...

For example, in the so called MSSM malt
h benchmark scenario introduced in

M. Carena, H.E. Haber, I. Low, N.R. Shah and C.E.M. Wagner, Phys. Rev. D

91, 035003 (2015), the Run 1 precision Higgs data places virtually no bound

on mA if tanβ ∼ 10.
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Direct searches for the additional Higgs states also suggest that these states

must be heavy, although the sensitivity of these searches are limited if

tanβ <∼ 10.
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Theoretical structure of the 2HDM

Consider the most general renormalizable 2HDM potential,

V = m2
11Φ

†
1Φ1 +m2

22Φ
†
2Φ2 − [m2

12Φ
†
1Φ2 + h.c.] + 1

2λ1(Φ
†
1Φ1)

2

+1
2λ2(Φ

†
2Φ2)

2 + λ3(Φ
†
1Φ1)(Φ

†
2Φ2) + λ4(Φ

†
1Φ2)(Φ

†
2Φ1)

+
{

1
2λ5(Φ

†
1Φ2)

2 +
[
λ6(Φ

†
1Φ1) + λ7(Φ

†
2Φ2)

]
Φ†

1Φ2 + h.c.
}
.

After minimizing the scalar potential, 〈Φ0
i 〉 = vi/

√
2 (for i = 1, 2) with

v ≡ (|v1|2 + |v2|2)1/2 = 2mW/g = 246 GeV.

Define the scalar doublet fields of the Higgs basis,

H1 =

(
H+

1

H0
1

)
≡ v∗1Φ1 + v∗2Φ2

v
, H2 =

(
H+

2

H0
2

)
≡ −v2Φ1 + v1Φ2

v
,

such that 〈H0
1〉 = v/

√
2 and 〈H0

2〉 = 0. The Higgs basis is uniquely defined

up to an overall rephasing, H2 → eiχH2.



In the Higgs basis, the scalar potential is given by:

V = Y1H
†
1H1 + Y2H

†
2H2 + [Y3H

†
1H2 + h.c.] + 1

2Z1(H
†
1H1)

2

+1
2Z2(H

†
2H2)

2 + Z3(H
†
1H1)(H

†
2H2) + Z4(H

†
1H2)(H

†
2H1)

+
{

1
2Z5(H

†
1H2)

2 +
[
Z6(H

†
1H1) + Z7(H

†
2H2)

]
H†

1H2 + h.c.
}

,

where Y1, Y2 and Z1, . . . , Z4 are real and uniquely defined, whereas Y3, Z5,

Z6 and Z7 are complex and transform under the rephasing of H2,

[Y3, Z6, Z7] → e−iχ[Y3, Z6, Z7] and Z5 → e−2iχZ5 .

Physical observables must be independent of χ.

After minimizing the scalar potential, Y1 = −1
2Z1v

2 and Y3 = −1
2Z6v

2.

Remark: Generically, the Zi are O(1) parameters.



The alignment limit in the general 2HDM

The neutral Higgs mass-eigenstates, denoted by {h1, h2, h3}, are linear

combinations of {
√
2ReH0

1 − v ,
√
2ReH0

2 ,
√
2 ImH0

2}, and are determined

by diagonalizing the 3× 3 real symmetric squared-mass matrix,

M2 = v2





Z1 Re(Z6) −Im(Z6)

Re(Z6)
1
2Z345 + Y2/v

2 −1
2Im(Z5)

−Im(Z6) −1
2Im(Z5)

1
2Z345 − Re(Z5) + Y2/v

2



 ,

where Z345 ≡ Z3 + Z4 + Re(Z5). The diagonalizing matrix is a 3 × 3 real

orthogonal matrix that depends on three angles: θ12, θ13 and θ23, such that

θ12 and θ13 are invariant whereas θ23 → θ23 − χ under the rephasing of H2.
∗

The couplings of
√
2Re H0

1 − v coincide with those of the SM Higgs boson.

Thus, the alignment limit corresponds to two limiting cases:

1. Y2 ≫ v2, corresponding to the decoupling limit.

2. |Z6| ≪ 1, corresponding to alignment with or without decoupling.

We identify the SM-like Higgs boson, h1 ≃
√
2ReH0

1 − v, with m2
h ≃ Z1v

2.
∗See H.E. Haber and D. O’Neil, Phys. Rev. D74, 015018 (2006) [Erratum: ibid., D74, 059905 (2006)].



The alignment limit of the general 2HDM in equations

To obtain the conditions in which h1 is the SM-like Higgs boson, noting that:

gh1V V

ghSMV V
= c12c13 , where V = W or Z ,

where hSM is the SM Higgs boson, we demand that

s12 , s13 ≪ 1 .

Here, s12 ≡ sin θ12, c12 ≡ cos θ12, etc. We denote the masses of the neutral

Higgs mass eigenstates by m1, m2 and m3. It follows that:

Z1v
2 = m2

1c
2
12c

2
13 +m2

2s
2
12c

2
13 +m2

3s
2
13 ,

Re(Z6 e
−iθ23) v2 = c13s12c12(m

2
2 −m2

1) ,

Im(Z6 e
−iθ23) v2 = s13c13(c

2
12m

2
1 + s212m

2
2 −m2

3) ,

Re(Z5 e
−2iθ23) v2 = m2

1(s
2
12 − c212s

2
13) +m2

2(c
2
12 − s212s

2
13)−m2

3c
2
13 ,

Im(Z5 e
−2iθ23) v2 = 2s12c12s13(m

2
2 −m2

1) .



Assuming no mass degeneracies in the neutral scalar sector, it then follows

that in the alignment limit,

s12 ≡ sin θ12 ≃
Re(Z6e

−iθ23)v2

m2
2 −m2

1

≪ 1 ,

s13 ≡ sin θ13 ≃ −Im(Z6e
−iθ23)v2

m2
3 −m2

1

≪ 1 ,

One additional small quantity characterizes the alignment limit,

Im(Z5e
−2iθ23) ≃ (m2

2 −m2
1)s12s13

v2
≃ −2 Im(Z2

6e
−2iθ23)v2

m2
3 −m2

1

≪ 1 .

Finally, the following mass relations in the alignment limit are noteworthy,

m2
1 ≃ Z1v

2 ,

m2
2 −m2

3 ≃ Re(Z5e
−2iθ23)v2 .



The alignment limit in the CP-conserving 2HDM

In the case of a CP-conserving scalar potential, one can choose χ such that

ImZ5 = ImZ6 = ImZ7 = 0, corresponding to a real Higgs basis. We identify

the CP-odd Higgs boson as A =
√
2 ImH0

2 , withm
2
A = Y2+

1
2(Z3+Z4−Z5)v

2.

After eliminating Y2 in favor of m2
A, the CP-even Higgs squared-mass matrix

with respect to the Higgs basis states, {
√
2Re H0

1−v ,
√
2Re H0

2} is given by,

M2
H =

(
Z1v

2 Z6v
2

Z6v
2 m2

A + Z5v
2

)
.

The CP-even Higgs bosons are h and H with mh ≤ mH. The couplings

of
√
2Re H0

1 − v coincide with those of the SM Higgs boson. Thus, the

alignment limit corresponds to two limiting cases:

1. m2
A ≫ (Z1 − Z5)v

2. This is the decoupling limit, where h is SM-like and

mA ∼ mH ∼ mH± ≫ mh.

2. |Z6| ≪ 1. h is SM-like if m2
A+(Z5−Z1)v

2 > 0. Otherwise, H is SM-like.



In particular, the CP-even mass eigenstates are:(
H

h

)
=

(
cβ−α −sβ−α

sβ−α cβ−α

) (√
2 Re H0

1 − v√
2Re H0

2

)
,

where cβ−α ≡ cos(β −α) and sβ−α ≡ sin(β −α) are defined in terms of the

mixing angle α that diagonalizes the CP-even Higgs squared-mass matrix when

expressed in the original basis of scalar fields, {
√
2Re Φ0

1−v1 ,
√
2Re Φ0

2−v2},
and tanβ ≡ v2/v1.

Since the SM-like Higgs must be approximately
√
2Re H0

1 −v, it follows that

• h is SM-like if |cβ−α| ≪ 1 ,

• H is SM-like if |sβ−α| ≪ 1.

Alignment without decoupling is required to have a SM-like H.

Remark: Although the tree-level couplings of
√
2Re H0

1 − v coincide with

those of the SM Higgs boson, the one-loop couplings can differ due to the

exchange of non-minimal Higgs states (if not too heavy). For example, the

H± loop contributes to the decays of the SM-like Higgs boson to γγ and γZ.



The alignment limit in equations

The CP-even Higgs squared-mass matrix yields,

Z1v
2 = m2

hs
2
β−α +m2

Hc2β−α ,

Z6v
2 = (m2

h −m2
H)sβ−αcβ−α ,

Z5v
2 = m2

Hs2β−α +m2
hc

2
β−α −m2

A .

If h is SM-like, then m2
h ≃ Z1v

2 and

|cβ−α| =
|Z6|v2√

(m2
H −m2

h)(m
2
H − Z1v2)

≃ |Z6|v2
m2

H −m2
h

≪ 1 ,

If H is SM-like, then m2
H ≃ Z1v

2 and

|sβ−α| =
|Z6|v2√

(m2
H −m2

h)(Z1v2 −m2
h)

≃ |Z6|v2
m2

H −m2
h

≪ 1 .



The MSSM Higgs Sector at tree-level

The MSSM Higgs sector is a CP-conserving 2HDM. The dimension-four

terms of the scalar potential constrained by supersymmetry. At tree level,

λ1 = λ2 = −λ3−λ4−λ5 =
1
4(g

2+g′ 2) , λ4 = −1
2g

2 , λ5 = λ6 = λ7 = 0 .

The corresponding real Higgs basis parameters of interest are:

Z1v
2 = m2

Zc
2
2β , Z5v

2 = m2
Zs

2
2β , Z6v

2 = −m2
Zs2βc2β .

in a convention where tanβ ≥ 0. It follows that,

cos2(β − α) =
m4

Z s22βc
2
2β

(m2
H −m2

h)(m
2
H −m2

Zc
2
2β)

.

The decoupling limit is achieved when mH ≫ mh as expected. Alignment

without decoupling is (naively) possible at tree-level when Z6 = 0, which

yields sin 4β ≃ 0. However, this limit is not phenomenologically viable. In any

case, radiative corrections are required to obtain the observed Higgs mass.



Tree-level MSSM Higgs couplings to quarks and squarks

The MSSM employs the Type–II Higgs–fermion Yukawa couplings. Employing

the more common MSSM notation, Hi
D ≡ ǫijΦ

j ∗
1 and Hi

U = Φi
2 (where

i, j = 1, 2 are weak SU(2) indices), the tree-level Yukawa couplings are:

−LYuk = ǫij
[
hbbRH

i
DQ

j
L + httRQ

i
LH

j
U

]
+ h.c. ,

which yields

mb = hbvcβ/
√
2 , mt = htvsβ/

√
2 .

The leading terms in the coupling of the Higgs bosons to third generation

squarks are proportional to the Higgs–top quark Yukawa coupling, ht,

Lint ∋ ht

[
µ∗(H†

DQ̃)Ũ+AtǫijH
i
UQ̃

jŨ+h.c.
]
−h2

t

[
H†

UHU(Q̃
†Q̃+Ũ∗Ũ)−|Q̃†HU |2

]
,

where Q̃ =

(
t̃L

b̃L

)
and Ũ ≡ t̃∗R.



In terms of the Higgs basis fields H1 and H2,

Lint ∋ htǫij
[
(sinβXtH

i
1 + cosβYtH

i
2)Q̃

jŨ + h.c.
]

−h2
t

{[
s2β|H1|2 + c2β|H2|2 + sinβ cosβ(H†

1H2 + h.c.)

]
(Q̃†Q̃+ Ũ∗Ũ)

−s2β|Q̃†H1|2 − c2β|Q̃†H2|2 − sinβ cosβ
[
(Q̃†H1)(H

†
2Q̃) + h.c.

]}
,

where

Xt ≡ At − µ∗ cotβ , Yt ≡ At + µ∗ tanβ .

Assuming CP-conservation for simplicity, we shall henceforth take µ, At real.



The radiatively corrected MSSM Higgs Sector

We are most interested in the limit where mh, mA, mH, mH± ≪ MS,

where MS characterizes the scale of the squark masses. In this case, we can

formally integrate out the squarks and generate a low-energy effective 2HDM

Lagrangian. This Lagrangian will no longer be of the tree-level MSSM form

but rather a completely general 2HDM Lagrangian. If we neglect CP-violating

phases that could appear in the MSSM parameters such as µ and At, then

the resulting 2HDM Lagrangian contains all possible CP-conserving terms of

dimension-four or less.

At one-loop, leading log corrections are generated for λ1, . . . λ4. In addition,

threshold corrections proportional to At, Ab and µ can contribute significant

corrections to all the scalar potential parameters λ1 . . . , λ7.



Computational technique†

• Employ the renomalization group equations (RGEs) for λ1, λ2, . . . λ7 of

the general 2HDM without supersymmetry for mZ ≤ µ ≤ MS.

• Impose supersymmetric boundary conditions at the scale µ = MS for

the λi. Use the RGEs to obtain the λi at the electroweak scale (either mt

or mZ). In this approximation, λ5 = λ6 = λ7 = 0 at all scales.

• Include threshold effects proportional to At, Ab and µ directly into the

boundary conditions for the λi at the scale µ = MS. Use the RGE to

obtain the λi at the electroweak scale (either mt or mZ).
‡

• Use the radiatively corrected λi to compute the corresponding Higgs basis

parameters Zi

†Explicit one-loop formulae can be found in H.E. Haber and R. Hempfling, Phys. Rev. D48, 4280 (1993).
‡Multiple SUSY mass thresholds can be taken into account with suitable modifications of the RGEs.
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Ũ
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3
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Ũ
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Ũ
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Ũ
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Ũ
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Example: One-loop threshold corrections to Z6



The leading one-loop corrected expressions for Z1, Z5 and Z6 are given by

Z1v
2 = m2

Zc
2
2β +

3v2s4βh
4
t

8π2

[
ln

(
M2

S

m2
t

)
+

X2
t

M2
S

(
1− X2

t

12M2
S

)]
,

Z5v
2 = s22β

{
m2

Z +
3v2h4

t

32π2

[
ln

(
M2

S

m2
t

)
+

XtYt

M2
S

(
1− XtYt

12M2
S

)]}
,

Z6v
2 = −s2β

{
m2

Zc2β −
3v2s2βh

4
t

16π2

[
ln

(
M2

S

m2
t

)
+

Xt(Xt + Yt)

2M2
S

− X3
t Yt

12M4
S

]}
.

where M2
S ≡ mt̃1

mt̃2
, Xt ≡ At − µ cotβ and Yt = At + µ tanβ.

Note that m2
h ≃ Z1v

2 is consistent with mh ≃ 125 GeV for suitable choices

for MS and Xt. Exact alignment (i.e., Z6 = 0) can now be achieved due to

an accidental cancellation between tree-level and loop contributions.



In equations,

m2
Zc2β =

3v2s2βh
4
t

16π2

[
ln

(
M2

S

m2
t

)
+

Xt(Xt + Yt)

2M2
S

− X3
t Yt

12M4
S

]
.

That is, Z6 ≃ 0 for particular choices of tanβ. The alignment condition is

then achieved by (numerically) solving a 7th order polynomial equation for

positive real solutions of tβ ≡ tan β (where Ât ≡ At/MS and µ̂ ≡ µ/MS),

M2
Zt

4
β(1−t2β)−Z1v

2t4β(1+t2β)+
3m4

t µ̂(Âttβ − µ̂)(1 + t2β)
2

4π2v2
[
1
6(Âttβ−µ̂)2−t2β

]
= 0 .

REMARK: Typically, we identify h as the SM-like Higgs boson. However, in

the alignment limit there exist parameter regimes, corresponding to the case

of m2
A + (Z5 − Z1)v

2 < 0 (where the radiatively corrected Z1 and Z5 are

employed), in which H is the SM-like Higgs boson. In either case, Z1v
2 is

the (approximate) squared mass of the SM-like Higgs boson.
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Negative and positive solutions for tanβ are interchanged under µ → −µ.

The number of real solutions decreases by two across a boundary when two

solutions coalesce and then move off the real axis as a complex conjugate pair.

A positive solution changes to a negative solution across a boundary (right

panel) by growing to +∞ and then “jumping” to −∞.



Top panels: Contours of positive values of tanβ corresponding to exact alignment, Z6 = 0, in the

(µ/MS, At/MS) plane, including the leading terms of the one-loop approximation. Z1 is adjusted to give

the correct Higgs mass. Taking the three top panels together, one can immediately discern the regions of zero,

one, two and three values of tanβ in which exact alignment is realized. In the overlaid blue regions we have

(unstable) values of |Xt/MS| ≥ 3.

Bottom panels: Contours of the critical value MA,c, corresponding to the tanβ solutions found in the top

panels. If mA < MA,c, then the heavier of the CP-even Higgs bosons, H, is SM-like.
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Top panels: Contours of the top squark mass parameter MS, which depends on the values of µ/MS and

At/MS, needed to obtain the correct Higgs squared-mass in the alignment limit, Z1v
2 = 125 GeV. The

three figures correspond to the three tanβ solutions of exact alignment previously exhibited.

Bottom panels: Value of Xt/MS ≡ Ât − µ̂/ tanβ, as a function of µ̂ ≡ µ/MS and Ât ≡ At/MS using

the corresponding tanβ solutions of exact alignment.



Leading two-loop corrections of O(αsh
2
t )

The dominant part of the two-loop corrections to the CP-even Higgs squared-

mass matrix can be obtained from the corresponding one-loop formulae with

the following very simple two step prescription.§ First, we replace

m4
t ln

(
M2

S

m2
t

)
−→ m4

t (λ) ln

(
M2

S

m2
t (λ)

)
, where λ ≡

[
mt(mt)MS

]1/2
,

where mt(mt) ≃ 165.6 GeV is the MS top quark mass, and the running top

quark mass in the one-loop approximation is given by

mt(λ) = mt(mt)

[
1 +

αs

π
ln

(
m2

t (mt)

λ2

)]
.

In our numerical analysis, we take αs = αs(mt(mt)) ≃ 0.10826.

§M. Carena, H. E. Haber, S. Heinemeyer, W. Hollik, C.E.M. Wagner and G. Weiglein, Nucl. Phys. B 580,

29 (2000).



Second, when m4
t multiplies that threshold corrections due to stop mixing

(i.e., the one-loop terms proportional to Xt and Yt), then we make the

replacement,

m4
t −→ m4

t (MS) ,

where

mt(MS) = mt(mt)

[
1 +

αs

π
ln

(
m2

t (mt)

M2
S

)
+

αs

3π

Xt

MS

]
.

Note that the running top-quark mass evaluated at MS includes a threshold

correction proportional to Xt that enters at the scale of supersymmetry

breaking. Here, we only keep the leading contribution to the threshold

correction under the assumption that mt ≪ MS.

In applying the prescription outlined above, we formally work to O(αs) while

dropping terms of O(α2
s) and higher. For example,

ln

(
M2

S

m2
t (λ)

)
≃
[
1 +

αs

2π

]
ln

(
M2

S

m2
t (mt)

)
.



We can now obtain more precise approximations for Z1, Z5 and Z6.

Z1v
2 = M2

Zc
2
2β + CL

(
1− 2αsL+ αs

)
+ CX1

(
1− 4αsL+ 4

3αsxt

)
,

Z5v
2 = s22β

[
M2

Z +
CL

4s4β

(
1− 2αsL+ αs

)
+

C

4s4β
X5

(
1− 4αsL+ 4

3αsxt

)]
,

Z6v
2 = −s2β

[
M2

Zc2β − CL

2s2β

(
1− 2αsL+ αs

)
− C

2s2β
X6

(
1− 4αsL+ 4

3αsxt

)]
,

where we have defined,

C ≡ 3m4
t

2π2v2
, αs ≡

αs

π
, xt ≡ Xt/MS , yt ≡ Yt/MS , L ≡ ln

(
M2

S

m2
t

)
,

and

X1 ≡ x2
t

(
1− 1

12x
2
t

)
, X5 ≡ xtyt

(
1− 1

12xtyt
)
, X6 ≡ 1

2xt(xt+yt)− 1
12x

3
tyt .

In the above equations, mt ≡ mt(mt) is the MS top quark mass.



Exact alignment, Z6 = 0, now yields an 11th order polynomial equation,

M2
Zt

8
β(1 − t2β) − Z1v

2t8β(1 + t2β) +
3m4

t µ̂(Âttβ − µ̂)t4β(1 + t2β)
2

4π2v2

[
1
6(Âttβ − µ̂)2 − t2β

]

+2αst
4
β

[
M

2
Z(1 − t

2
β)

2
− Z1v

2
(1 + t

2
β)

2]
µ̂(Âttβ − µ̂)

[
1
6(Âttβ − µ̂)

2
− t

2
β

]

+
αsm

4
t µ̂(Âttβ − µ̂)2(1 + t2β)

2

π2v2

[
1
6(Âttβ − µ̂)

2
− t

2
β

]

×
[
t3β + 3t2β(Âttβ − µ̂) − 1

4(Âttβ − µ̂)3
]
= 0.

As previously noted, solutions to this equation for negative tanβ at a point

in the (µ̂ , Ât) plane can be reinterpreted as positive tanβ solutions at the

point (−µ̂ , Ât).

In the region of interest in the (µ/MS, At/MS) plane, we find that the

previous one-loop real tanβ solutions are still present (appropriately perturbed

at the two-loop level). In addition, another real tanβ solution emerges with

|Xt/MS| >∼ 3, and is therefore discarded.



Comparing the one-loop results for tanβ solutions at exact alignment (top

panels) to the corresponding two-loop improved results (bottom panels).

Contours of tanβ corresponding to exact alignment, Z6 = 0, in the (µ/MS, At/MS) plane. Z1 is adjusted
to give the correct Higgs mass. Top panels: Approximate one-loop result. Bottom panels: Two-loop improved

result. Taking the top (bottom) three panels together, one can immediately discern the regions of zero, one,
two and three values of tanβ in which exact alignment is realized. In the overlaid blue regions we have
(unstable) values of |Xt/MS| ≥ 3.



Comparing the one-loop results for MA,c solutions (top panels) to the
corresponding two-loop improved results (bottom panels). If mA < MA,c,
then the heavier of the CP-even Higgs bosons, H, is SM-like.

Contours of the critical value MA,c associated with the tanβ solutions for exact alignment previously found.
Top panels: Approximate one-loop result. Bottom panels: Two-loop improved result. In the overlaid blue

regions we have (unstable) values of |Xt/MS| ≥ 3.



Comparing the value of MS needed to obtain the correct Higgs squared-mass
in the alignment limit, Z1v

2 = 125 GeV, in the one loop approximation (top
panels) and the corresponding two-loop improved results (bottom panels).

Contours of the top squark mass parameter MS associated with the tanβ solutions for exact alignment

previously found. Top panels: Approximate one-loop result. Bottom panels: Two-loop improved result.



How well do the approximate two-loop results for the exact alignment limit¶

match a comprehensive scan over the MSSM parameter space? In a recent

paper,‖ an 8-parameter pMSSM scan was performed to determine allowed

parameter regimes which contain a light CP-odd Higgs boson A. Typically, h

is SM-like, although one cannot yet rule out the possibility of a SM-like H.

• 20 ≤ tanβ
• 15 ≤ tanβ ≤ 20
• 10 ≤ tanβ ≤ 15
• 5 ≤ tanβ ≤ 10
• tanβ ≤ 5

Higgs mass ⊕ Higgs rates

• 20 ≤ tanβ
• 15 ≤ tanβ ≤ 20
• 10 ≤ tanβ ≤ 15
• 5 ≤ tanβ ≤ 10
• tanβ ≤ 5

Higgs mass ⊕ Higgs rates ⊕ h/H/A → ττ exclusion

Preferred points of the pMSSM-8 scan with low mA ≤ 350 GeV for different selections of observables. The

points are within the (approximate) 95% CL region, based on the following observables. Left panel: only Higgs

mass and signal rates; Right panel: Higgs mass, signal rates and h/H/A → τ+τ− exclusion likelihood.

¶Of course, the precision Higgs data only requires that the condition of alignment is approximately satisfied.
‖P. Bechtle, H.E. Haber, S. Heinemeyer, O. St̊al, T. Stefaniak, G. Weiglein and L. Zeune, arXiv:1608.00638.



Including additional constraints from SUSY particle searches and the impact

of SUSY radiative corrections on SM observables, the allowed parameter

regions of the pMSSM-8 scan shrinks further. For example, the negative µ

region is mostly disfavored by BR(B → Xsγ), whereas the negative At region

is disfavored by BR(Bs → µ+µ−).

• 20 ≤ tanβ
• 15 ≤ tanβ ≤ 20
• 10 ≤ tanβ ≤ 15
• 5 ≤ tanβ ≤ 10
• tanβ ≤ 5

all observables except aµ

• 20 ≤ tanβ
• 15 ≤ tanβ ≤ 20
• 10 ≤ tanβ ≤ 15
• 5 ≤ tanβ ≤ 10
• tanβ ≤ 5

all observables

Preferred points of the pMSSM-8 scan with low mA ≤ 350 GeV for all observables except aµ (left panel),

and for all observables (right panel).



Bottom line: mA values as low as 200 GeV are still allowed in the MSSM.

Preferred parameter regions in the (MA, tan β) plane (left) and (MA, µAt/M
2
S) plane

(right), where M2
S = mt̃1

mt̃2
and h is the SM-like Higgs boson, in a pMSSM-8 scan.

Points that do not pass the direct constraints from Higgs searches from HiggsBounds and

from LHC SUSY particle searches from CheckMATE are shown in gray. Applying a global

likelihood analysis to the points that pass the direct constraints, the color code employed

is red for ∆χ2
h < 2.3, yellow for ∆χ2

h < 5.99 and blue otherwise. The best fit point is

indicated by a black star.



Conclusions

• In light of the precision Higgs data, the condition of alignment (i.e., one of
the Higgs mass eigenstates is aligned with the Higgs vacuum expectation
value) is approximately satisfied.

• The alignment limit is approximately satisfied in the decoupling regime
where mA ≫ mh. But, approximate alignment can also be achieved
without decoupling if the Higgs basis parameter |Z6| ≪ 1.

• Alignment without decoupling is possible in the MSSM, but it is achieved in
a parameter regime in which there is an accidental approximate cancellation
between tree-level and loop-level contributions to Z6. (No symmetry exists
that can enforce such a cancellation.

• Regions of approximate alignment without decoupling must necessarily
appear in any comprehensive scan of the MSSM parameter space.

• Using all relevant data to constrain the MSSM Higgs sector, it is still
possible that: (i) mA is as low as 200 GeV, and (ii) H (rather than h) can
be identified as the observed (SM-like) Higgs boson.


