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BSM models for Higgs physics: top-down
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BSM models for Higgs physics: top-down
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® Do we search in all the right places”

e Can we interpret the results in a wider class of models?
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® [f new physics IS seen, can we characterise it in terms of
observed properties, with minimal reliance on untested
assumptions?
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BSM models for Higgs physics: bottom-up
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BSM models for Higgs physics: bottom-up
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Virtues and vices of Higgs EFTs

Biekotter, Knochel, MK, Liu, Riva (Phys.Rev. D91 (2015) 055029

Higher-dimensional operators may change the energy
dependence of cross sections and thus kinematic distributions,

e.g.inpp = ZH:
I ew = 0.16(A%m3), cp = —0.09(A%m3)
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Virtues and vices of Higgs EFTs

Biekotter, Knochel, MK, Liu, Riva (Phys.Rev. D91 (2015) 055029

Higher-dimensional operators may change the energy
dependence of cross sections and thus kinematic distributions,
e.g.inpp = ZH:

allows to measure dim-6 operators
through distributions
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Virtues and vices of Higgs EFTs

Biekotter, Knochel, MK, Liu, Riva (Phys.Rev. D91 (2015) 055029

Higher-dimensional operators may change the energy
dependence of cross sections and thus kinematic distributions,

e.g. in pp = ZH:

e However, EFTs are only reliable if A » ELHc

¢ |[f the ef

‘ect of dim-6 operators is large, the EFT

expansi

on is doubtful; expect to find new

particles with M = O(TeV)




Virtues and vices of Higgs EFTs

Biekotter, Knochel, MK, Liu, Riva (Phys.Rev. D91 (2015) 055029

Higher-dimensional operators may change the energy
dependence of cross sections and thus kinematic distributions,
e.g. in pp = ZH:

e However, EFTs are only reliable if A » ELHc

e |[f the effect of dim-6 operators is large, the EFT
expansion is doubtful; expect to find new
particles with M = O(TeV)

cf. Contino, Falkowski, Goertz, Grojean, Riva (JHEP 1607 (2016) 144);
Brehmer, Freitas, Lopez-Val, Plehn (Phys. Rev. D 93, 075014 (2016));
Biekdtter, Brehmer, Plehn (arXiv:1602.05202 [hep-ph])


http://arxiv.org/abs/arXiv:1602.05202

BSM models for Higgs physics: bottom-up

effective field theories
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BSM models for Higgs physics: bottom-up

effective field theories simplified models
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Simplified models

e Mmediate between theory and data
e allow to explore the space of theories and signatures
e connect direct and indirect searches for new physics

cf. Models as Mediators: Perspectives on Natural and Social Science - M. S. Morgan and M. Morrison (Eds.)



Simplified models

e Mmediate between theory and data

e allow to explore the space o

" theories and signatures

e connect direct and indirect searches for new physics

cf. Models as Mediators: Perspectives on Natural and Social Science - M. S. Morgan and M. Morrison (Eds.)

Simplified models have become standard for SUSY and
dark matter searches at the LHC. We wanted to construct
simplified models for Higgs physics to



Simplified models

e Mmediate between theory and data

e allow to explore the space o

" theories and signatures

e connect direct and indirect searches for new physics

cf. Models as Mediators: Perspectives on Natural and Social Science - M. S. Morgan and M. Morrison (Eds.)

Simplified models have become standard for SUSY and
dark matter searches at the LHC. We wanted to construct
simplified models tor Higgs physics to

e cxplore BSM theories that affect the Higgs sector;

e connect measurements of Higgs properties and
direct searches for new physics.



A simplified model for Higgs physics

Dolan, Hewett, MK, Rizzo (JHEP 1607 (2016) 039)

We take the SM and add

® g scalar singlet S
e o vector-like fermion representation F




A simplified model for Higgs physics

Dolan, Hewett, MK, Rizzo (JHEP 1607 (2016) 039)

We take the SM and add

® g scalar singlet S
e o vector-like fermion representation F

S aqguires avev, S = (s + vs), and provides mass for the fermion,
MF = Vr Vs. The Higgs and new scalar fields mix, Ans HTH S2, and thus

we generate new physics eftects in all SM Higgs couplings:

g



A simplified model for Higgs physics

Different representations for the new fermion result in different patterns
for Higgs cross sections and branching ratios.



A simplified model for Higgs physics

Different representations for the new fermion result in different patterns
for Higgs cross sections and branching ratios.

Consider the Higgs gauge boson coupling ~ h VuW#v

a 1 )\H3U2 I €y €g €B 817,74
7Y G’Y?E m%
(T’) 5 1 1 1
/ 18 6 144 16
o as 1 [ Agsv? B J iR
GCLG Eg 2
7T U ms . ' )
2 2
Quir | 3@° —% Q> 0
9?1 ( Ausv?®
BB GB_QE( 2 )
S N 1 0 1 1
E §) 48 48
L+R




A simplified model for Higgs physics

The simplest simplified model with F = T has 5 free and 3 fixed
parameters. We choose:

m2, 0, Vs, mt and 6L

and set mi= 125 GeV, vy = 246 GeV and mi = 173 GeV.



A simplified model for Higgs physics

The simplest simplified model with F = T has 5 free and 3 fixed
parameters. We choose:

M2, 6, Vs, mt and 6L

and set mi= 125 GeV, vy = 246 GeV and mi = 173 GeV.

The parameters are constrained by

e perturbative unitary
e precision EW data: S, T and U

e Higgs cross sections and branching ratios



A fit to the Higgs cross sections and BRs
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A fit to the Higgs cross sections and BRs
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A fit to the Higgs cross sections and BRs
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It IS Impossible to constrain m2, Mt and vs
from inclusive Higgs observables
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Need to consider more exclusive Higgs
observables and direct searches tor ho and T.
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The Higgs Pr distribution

One can try to resolve the heavy new fermion in the loop
through Higgs + jet production:
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The Higgs Pr distribution

One can try to resolve the heavy new fermion in the loop
through Higgs + jet production:
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Higgs pair production

One can try to learn something about the new scalar
sector through Higgs pair production:
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Higgs pair production

One can try to learn something about the new scalar
sector through Higgs pair production:

pPp — hlhl
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Direct searchesforSand T
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Direct searchesforSand T




Direct searchesforSand T
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Complementarity of Resonant Scalar,

Vector-Like Quark and Superpartner Searches
Biekotter et al. (arXiv:1608.01312 [hep-ph])

Imagine that a new scalar resonance has been discovered,
with a mass of = 750 GeV, and decaying into yy
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Imagine that a new scalar resonance has been discovered,
with a mass of = 750 GeV, and decaying into yy

e Choose a VLQ representation and try to fit the signal
— (X, T) with guantum numbers (3,2,7/6) and charge
Qx=5/3, Q1=2/3



Complementarity of Resonant Scalar,

Vector-Like Quark and Superpartner Searches
Biekotter et al. (arXiv:1608.01312 [hep-ph])

Imagine that a new scalar resonance has been discovered,
with a mass of = 750 GeV, and decaying into yy

e Choose a VLQ representation and try to fit the signal
— (X, T) with guantum numbers (3,2,7/6) and charge
Qx=5/3, Q1=2/3

e\\Nork out the signatures in the scalar sector:

VLQ model Representation ~Z/vy ZZ/yy WW/yy gg/vy Ty [MeV] Ty [MeV] R [fb]

(X,T) (3,2, I) 007 059 0.90  17.0 1.03 20.0 6.2



Complementarity of Resonant Scalar,

Vector-Like Quark and Superpartner Searches
Biekotter et al. (arXiv:1608.01312 [hep-ph])

e Consider searches for the VLQ:

Di-photon rate only:
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Complementarity of Resonant Scalar,
Vector-Like Quark and Superpartner Searches
Biekotter et al. (arXiv:1608.01312 [hep-ph])

e Consider searches for the VLQ:

Adding a large suite of searches (using CheckMate):
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Complementarity of Resonant Scalar,
Vector-Like Quark and Superpartner Searches

BiekoOtter et al.

(arXiv:1608.01312 [hep-ph])

e Consider searches for the VLQ:

Tightest bound on VLQ from SUSY search!

myyLqQ [GeV]
— p—
) [\
) )
) )

800 1000 1200 1400
vs [GeV]

800

e | 600"

0.01 |

~0.01 |

“““““““““““ —002h

800 1000 1200 1400 600 800 1000 1200 1400 1600
vs [GeV] myLq [GeV]



BSM physics: from SUSY to simplified models (and back...)
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BSM physics: from SUSY to simplified models (and back...)
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BSM physics: from SUSY to simplified models (and back...)

Are EFTs reliable
at tqe LHC? “Sketches of models”
More
— model dependence
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BSM physics: from SUSY to simplified models (and back...

Less complete
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BSM physics: from SUSY to simplified models (and back...)

Are EFTs reliable
at the LHC? )
— model dependence complete
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Thank you!
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A simplified model for Higgs physics
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A simplified model for Higgs physics
LD »CYukawa =+ Lgauge — V(Ha S)
We chose F =T, colour-triplet, SU(2) singlet, Q = 2/3:

—1int —int == —Iint —int ~

Lyukawa = yr STy, TR +y:Qp Htg' +yQp Hop +ArQp HTR"



A simplified model for Higgs physics
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We chose F =T, colour-triplet, SU(2) singlet, Q = 2/3:

—int —int == —int —iIint ==

Lyukawa = yr STy, TR +y:Qp Htg' +yQp Hop +ArQp HTR"

After SSB the SM top quark tint and the vector quark Tint mix
to form the mass eigenstates tand T:



A simplified model for Higgs physics
LD L:Yukawa, =+ Lgauge — V(Ha S)
We chose F =T, colour-triplet, SU(2) singlet, Q = 2/3:

—int —int == —int —iIint ==

Lyukawa = yr STy, TR +y:Qp Htg' +yQp Hop +ArQp HTR"

After SSB the SM top quark tint and the vector quark Tint mix
to form the mass eigenstates tand T:




A simplified model for Higgs physics

L: D) »CYukawa ‘|‘ [:ga,uge . V(H7 S)



A simplified model for Higgs physics

L: D) [:Yukawa ‘|‘ [:ga,uge . V(H7 S)
V(H,S)=—p?H'H+ NH'H)>+ S-H'H S

+7FHTHS? +b,5+ %252 + %353 + %S‘l

. it
with -+ H = (jg(h + vir + i¢")

) and S = (s+ vg)

For simplicity, we assume a Zz-symmetry and set a; = b1 = bz = 0.



A simplified model for Higgs physics

L: D) »CYukawa ‘|‘ »Cgauge . V(H7 S)
V(H,S)=—pu?HTH + XNHTH)? + %HTHS
+%HTH S% 4+ 015+ %252 + %333 + %S‘*

. .3'¢,+ B
with  H = (w}g(th’l’H +mg)) and S = (s+ vg)

For simplicity, we assume a Zz-symmetry and set a; = b1 = bz = 0.
H and S mix, to form mass eigenstates h1 and ha:

9 9 ( a% ) 9 9 CL% UJQLI
ms = 2\v 1 — —<— ms = 2b,v (1 | )
1 H 4)\[)4 2 S 4b421 U%

tan(260) = Z_i ??J}_];




A simplified model for Higgs physics

't Is straightforward to calculate the couplings of the 125-Higgs
to SM particles:

L e - i o D T
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A simplified model for Higgs physics

't Is straightforward to calculate the couplings of the 125-Higgs
to SM particles:

L e - i D T
S = o EeR e SNl e e GG

(3%

For the loop-induced couplings one has

m ¢ ™mmr

2
s Z 9h - 9hTT N VH
ghgg — 47'('2 ( 1S Al/Q(Tf) i Al/Q (TT)) ~ gg% (CQ o )
f




Is the new the scalar h> the 750 GeV resonance?



Is the new the scalar h> the 750 GeV resonance?

E\m’
%b& T
<l ¢

Need o(pp — hso) x BR(ho — v7v) ~ O(few tb)

2
With BR(hy — ) ~ g((ZZ - ;;; =3 (f) ~ 0.5%

this corresponds to o(pp — ho) = 1pb

mr
and thus yr=—>1
Vg



Is the new the scalar h> the 750 GeV resonance?
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A small vs ~ 100 GeV implies a large yr = mr/vs
and a violation of perturbative unitarity.

Can restore perturbativity by adding more generations of new fermions.



Is the new the scalar h> the 750 GeV resonance?
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A small vs ~ 100 GeV implies a large yr = mr/vs
and a violation of perturbative unitarity.

Can restore perturbativity by adding more generations of new fermions.

However, a large width T'y, =~ 45 GeV as favoured by ATLAS,
would most likely iImply non-perturbative dynamics. (See e.g. 1512.04933)



