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What is AEgIS?

 Antihydrogen Experiment: Gravity, 

Interferometry, Spectroscopy

 Goal: to test the weak equivalence 

principle for antimatter using 

antihydrogen.



Key terms

 Antimatter

 Weak equivalence principle



And what is antimatter?

Proton Antiproton

Positive Negative
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Antimatter:

• Opposite charge

• Same mass (?)

• Opposite magnetic 

dipole moment

1930: Dirac proposed 

antimatter

1931: Anderson 

discovers the positron



Weak Equivalence Principle

Apple Apple Anti-apple



We need cold antihydrogen.

 Antihydrogen is neutral, not effected by stray 

electromagnetic fields. 

 We need cold antimatter to achieve a detectable 

deflection of H.



Deflection of a particle in earth’s 

gravitational field (assuming g = 

9.8m/s2)
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So how do you measure the 

temperature of antihydrogen?

 We cannot use empirical methods.  No 

thermometer will work here.

 We must rely on the kinematic definition 

of temperature: temperature is 

determined by the Maxwell-Boltzmann 

velocity distribution

 Temperature of H is determined by the p 

and so we focus on measuring p 

temperature



Methodology: step by step 

 First: the Penning-Malmberg Trap
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Model: 1d Potential Well

 “Particles in a box”

 W0 must be large enough that initially no 

particles escape

 We assume that the particles do not 

interact 

 We neglect space charge effects



Methodology: step by step 

User inputs particle 

number (104-109)

User inputs 

temperature (~ < 

50K)

Apply the Maxwell-

Boltzmann Equation 

to the particles

V = W0 V = W0

Length of Trap



Methodology: step by step 

 We lower one end potential at a constant speed

 This allows for a linear mapping between time and 

voltage/energy



Methodology: Step by Step

 Particles with sufficient energy 

escape at each step and are counted 

in a histogram

 Fit particles with highest energies 

(<1%): avoid disturbing equilibrium.   



Methodology: step by step 

• m is slope of the fit

• q is the charge of 

the particle

• kb is Boltzmann’s 

constant



So how realistic is it really?

 Detection Efficiency Test! 

 All real systems have limited detection 

efficiency.

 AEgIS Scintillators have an efficiency ~20% 

because of solid angle considerations.



20
40

60
80

100

20 40 60 80

100

500 000 Particles, dW = 0.1 mV, dt = 1ms)

Reference: 100% Detection

Input Temperature (K)

C
a
lc

u
la

te
d
 T

e
m

p
e
ra

tu
re

 (
K

) 



50%

10%

20
40

60
80

100

20 40 60 80

100

500 000 Particles, dW = 0.1 mV, dt = 1ms)

20
40

60
80

100
0 50

100

150

200

250

300

500 000 Particles, dW = 0.1 mV, dt = 1ms)

Input Temperature (K)

Input Temperature (K)

C
a
lc

u
la

te
d
 T

e
m

p
e
ra

tu
re

 (
K

) 

C
a
lc

u
la

te
d
 T

e
m

p
e
ra

tu
re

 (
K

) 



Effect of Trap Length! In Progress

 Trap Length Test
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We anticipate a smearing of the distribution

We were unable to recreate this

We see an altered histogram 



Don’t forget about the 

experiment.

 The simulation shows us which 

parameter regimes to look 

 We look at <1%, this is to avoid 

disturbing equilibrium, but its also useful 

for experiment

 We have implemented low noise 

hardware: low dark noise for single 

particle detection and low noise on ramp

 We are in the process of taking data



Looking forward:

 Develop standard temperature 

determination in the AEgIS apparatus 

 Implement our code into gAn analysis 

framework



What is ahead for AEgIS

 Produce cold antihydrogen

 Measure the effect of earth’s 

gravitational field on antihydrogen
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Cultural Experiences! 

Traveling and staying.





















Thank you!


