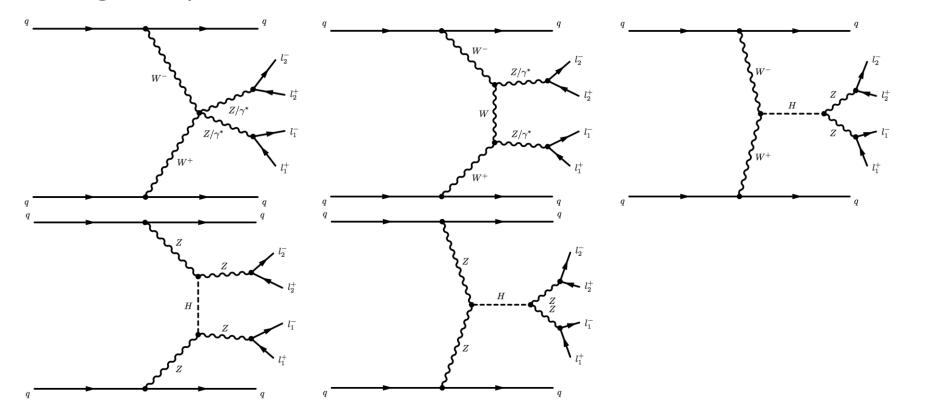
Vector Boson Scattering (VBS) Analysis in ZZ + 2 jets Production with TMVA

Albert Guo, 12/8/2016 Supervisor: Prof. Bin Zhou¹ Dr. Yusheng Wu^{1,2}

¹ University of Michigan

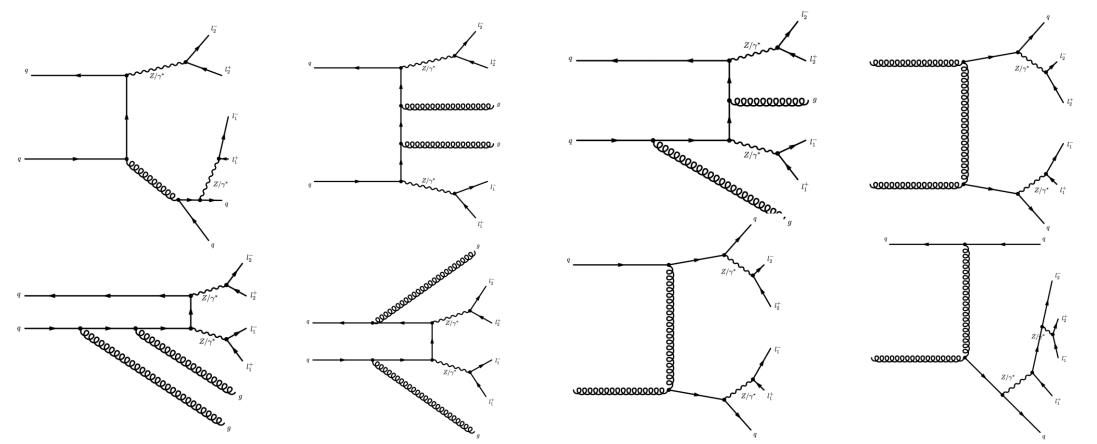
² Institute of Physics, Academia Sinica

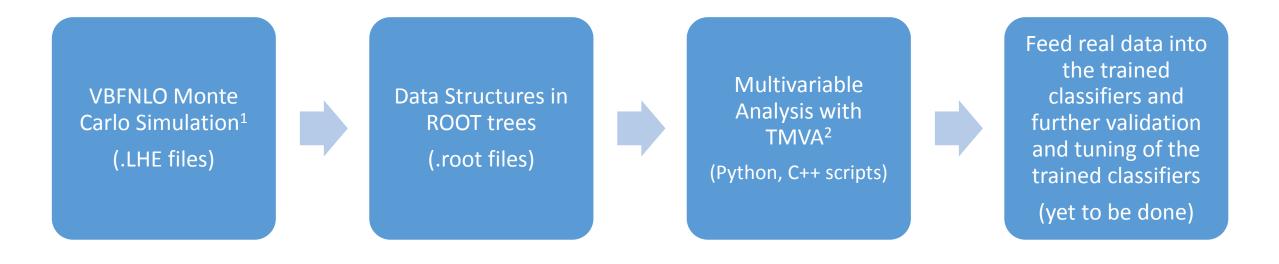

Physics background and purpose of measuring the VBS ZZ + 2 jets Production

- Vector-boson-scattering (VBS) two-boson production gives a unique opportunity to examine the nature of electroweak symmetry breaking (EWSB) in the Standard Model (SM).
 - The scattering of gauges bosons violates unitarity at the TeV scale if there is no Higgs boson.
 - The unitarity can be restored by including the Higgs bosons which leads to a delicate cancellation of divergence at high energy.
- This mechanism can be tested via measuring the VBS production cross sections. Any anomalies will bring up questions into
 - whether the Higgs boson is as predicted in the SM
 - whether the EWSB mechanism is as predicted in the SM

Signal: VBS

pp -> Z Z jj -> l+ l- l+ l- jj


Z pair + 2 jets production in vector boson fusion with decay into charged leptons


Major Background: QCD

pp -> Z Z jj -> l+ l- l+ l- jj

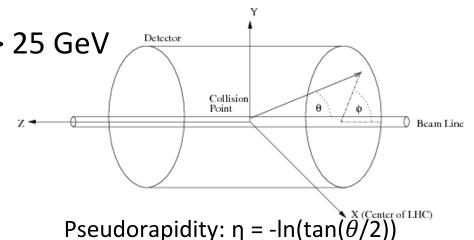
QCD induced Z Z + 2 jets production with fully leptonic decay.

Research Role and Workflow

¹ <u>VBFNLO</u> is a fully flexible parton level Monte Carlo program for the simulation of vector boson fusion, double and triple vector boson production in hadronic collisions at next to leading order in the strong coupling constant.

² The Toolkit for Multivariate Data Analysis with ROOT (<u>TMVA</u>) is a standalone project that provides a ROOT-integrated machine learning environment for the processing and parallel evaluation of sophisticated multivariate classification techniques.

VBFNLO of 1M events generation for VBS and QCD with **e+ e- e+ e- jj** final states


	VBS jet cuts	QCD jet cuts	
min jet-jet R separation	0	0	
max parton pseudorapidity (η)	5.0	5.0	
exponent of generalised k_T algorithm	-1.0	-1.0	
min jet transerverse momentum (pT)	15.0	15.0	
max jet rapidity	9	9	
	VBS lepton cuts	QCD lepton cuts	
max lepton rapidity	2.8	2.8	
min lepton transerverse mome (pT)	4.0	4.0	
min. m_l+l- for any comb. of opposite charged leptons	4	4	
max. m_l+l- for any comb. of opposite charged leptons	13000	13000	
min lepton-lepton R separation	0.01	0.01	
max lepton-lepton R separation	50.0	50.0	

Rapidity: $Y = \frac{1}{2} \cdot \log((E + Pz) / (E - Pz))$; R: solid angular distance between two tracks

Pre-selection Criteria

Where θ is the angle between the particle three-momentum **p** and the positive direction of the beam axis.

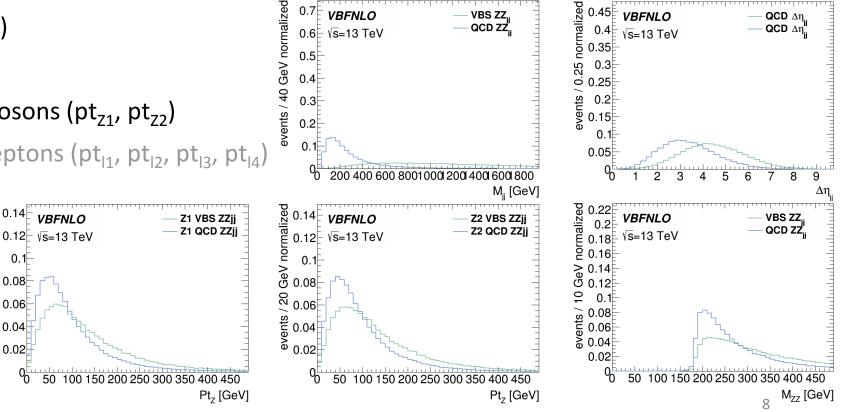
- 1. Transverse momentum of lepton 1 (leading lepton) > 25 GeV
- 2. Transverse momentum of leptons 2, 3, 4 > 7 GeV
- 3. Pseudorapidity of leptons 1, 2, 3, 4 < 2.5
- 4. Mass of Z_1 and Z_2 in the range of (66, 116) GeV

Selection (riteria		VBS Selection efficiency		QCD Selection efficiency
None	890100	1	1014200	1
Pre-selection	209752	0.236	115629	0.114
Pre-selection and m(jj) > 500 GeV and Δη(jj) > 3	125171	0.141	9509	0.009

Training a Boosted Decision Tree (BDT) as the signal-background classifier

Select discriminant variables for classification

- mass of 2 jets (m_{ii})
- change of Pseudorapidity ($\Delta \eta$) 2.
- mass of 2 bosons (m_{77}) 3.
- transverse momentum of 2 bosons (pt_{z1} , pt_{z2}) 4.
- transverse momentum of 4 leptons (pt_{11} , pt_{12} , pt_{13} , pt_{14}) 5.


normalize

0.1

> 0.08

R 0.06

events 0.04

0.7

Boosting Decision Trees (BDT) Configuration

- Transformations: Decorrelation; Principle Component Analysis (PCA); Gaussian, Decorrelation transformation:
- Training set: 60% of signal data and the same amount of background data
- Testing set: the rest of signal and background data
- Number of trees: 500/1000
- Boost type:
 - Adaptive
 - Adaptive + Decorrelation
 - Adaptive + Fisher discriminant
 - Gradient
 - Bagging
- For Adaptive Boost: AdaBoostBeta = 0.5, use Bagged Boost, Bagged Sample Fraction = 0.5 📧 c4
- Separation type: Gini Index: $p \cdot (1 p)$ where p is purity
- Number of cuts = 20
- Maximum depth = 5
- MinNodeSize = 2.5

node

В

xi < c1

xj > c3

|xk < c4|

S

xj < c3

S

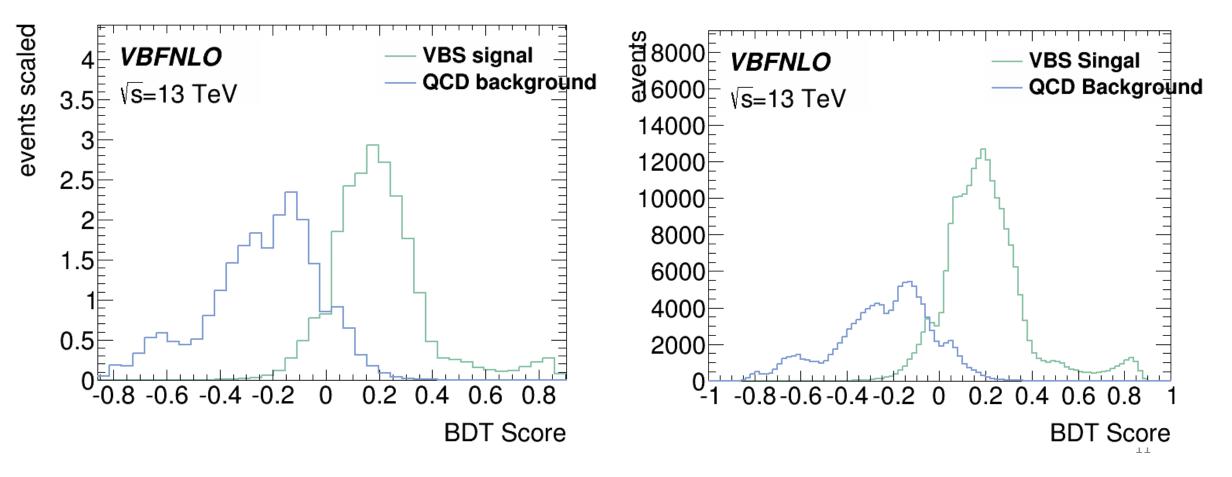
xi > c1

S

 $x_j > c_2$

В

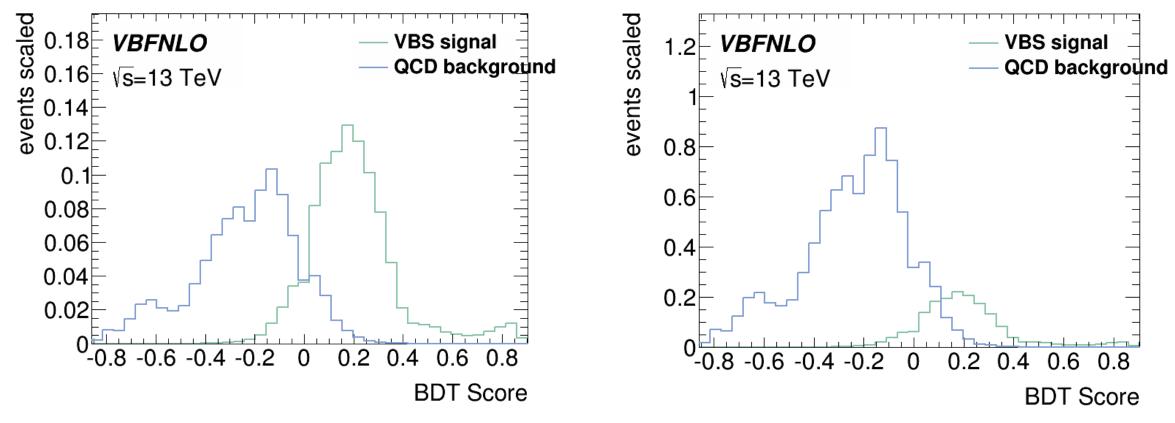
xj < c2

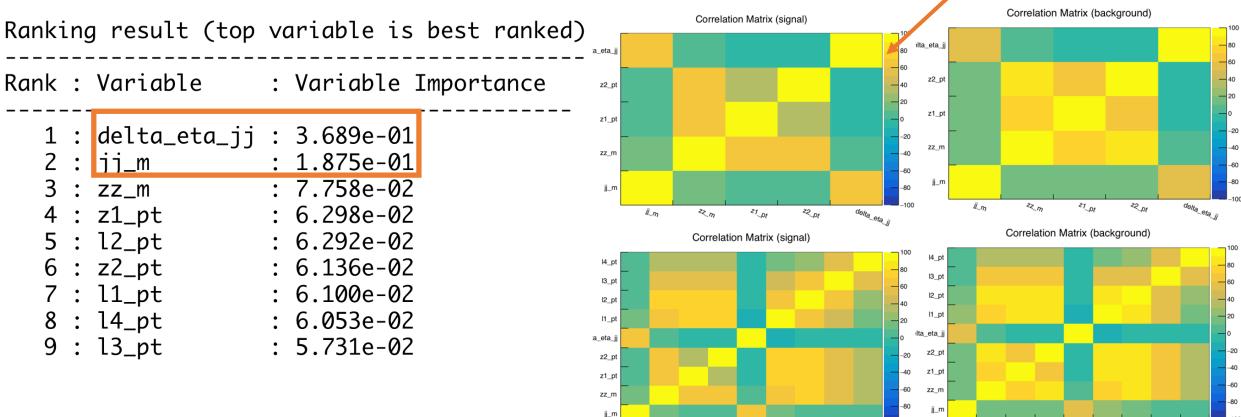

Boosting Decision Trees (BDT) VS. Variable Cuts at m(jj) > 500 GeV and $|\Delta \eta(jj)| > 3$

CLASSIFICATION	Signal reg	ion cut	N(S)	N(B)		N(S)	N(B)
by cuts on variables	s m(jj) > 50	0 GeV and Δη(jj) > 3 cut	1.352+/- 0.0033	0.901+/- 0.01217	NO SELECTION	7.2	74.0
by BDT 500 trees	0		1.539 +/- 0.0035	0.938 +/- 0.00827	AFTER PRE-SELECTIC	ON 1.70	8.43
by BDT 500 trees	0.040		1.460 +/- 0.0034	0.648 +/- 0.00688	All yields are n	ormaliz	ed to
by BDT 500 trees	0.080		1.309 +/- 0.0033	0.354 +/- 0.00508	40fb-1 [*] , which	is close	to
by BDT 500 trees	0.120		1.145 +/- 0.0030	0.190 +/- 0.00372	data luminosity	y at 13 T	ГeV
by BDT 500 trees	0.160		0.964 +/- 0.0028	0.096 +/- 0.00264	8000 VBFNLO	VBS (Singal _
by BDT 500 trees	0.200	Increment by 0.04	0.763 +/- 0.0025	0.042 +/- 0.00176	6000 √s=13 TeV		Background
by BDT 500 trees	0.240		0.576 +/- 0.0022	0.018 +/- 0.00114	4000 2000	ß	
by BDT 500 trees	0.280		0.419 +/- 0.0018	0.0073 +/- 0.00073	0000 - 8000 -	ſ \	
by BDT 500 trees	0.320		0.292 +/- 0.0015	0.0034 +/- 0.00050	6000		
by BDT 500 trees	0.360		0.204 +/- 0.0013	0.0015 +/- 0.00033	4000	1	
by BDT 500 trees	0.400		0.159 +/- 0.0011	0.00088 +/- 0.00025	0 ^E	0.2 0.4 0.	.6 0.8 1
by BDT 500 trees	0.440		0.103 +/- 0.0010	0.00073 +/- 0.00023		BD	T Score
by BDT 500 trees	0.480		0.120 +/- 0.0009	0.00051 +/- 0.00019		21	
by BDT 500 trees	0.520		0.103 +/- 0.0008	0.00029 +/- 0.00015	*10 ⁻²⁸ m ² (100 fm ²	²) 10	

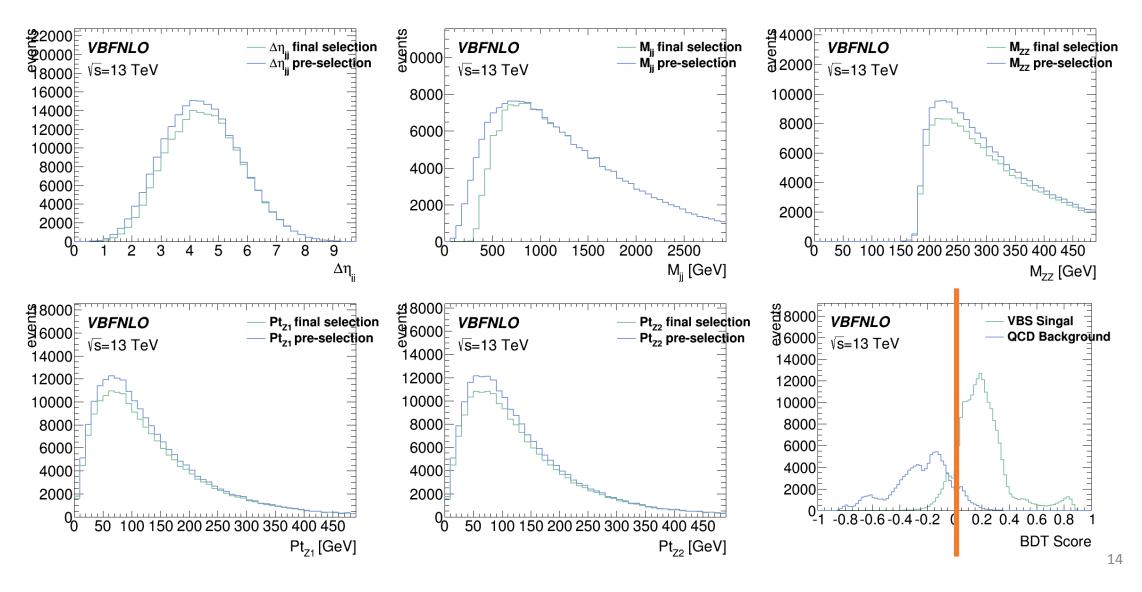
Events Distributions

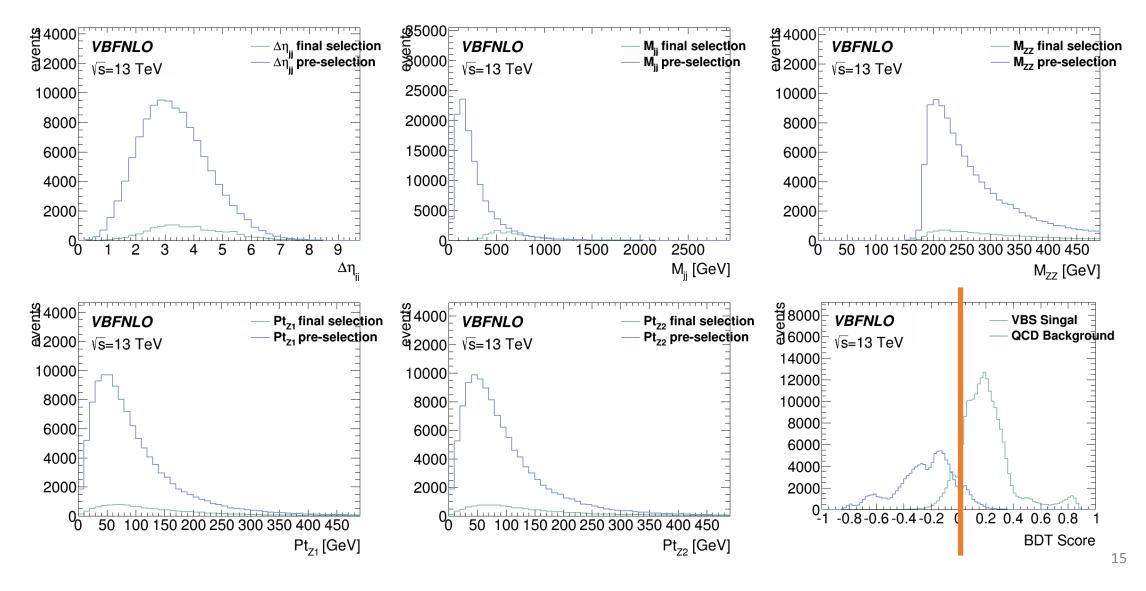
distribution obtained directly from TMVA


distribution by directly counting events from ROOT trees

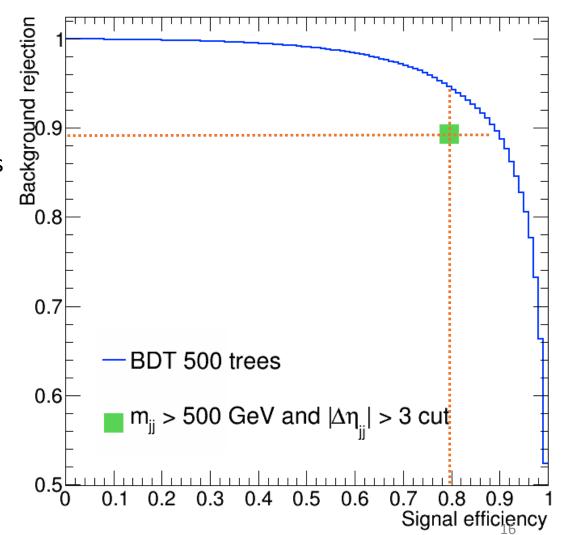

BDT Distributions from TMVA

normalized to unity area




BDT Ranking of Variables and Correlation Matrices

Variable Selection for VBS for BDT score cut at 0.08 in linear scale



Variable Selection for QCD for BDT score cut at 0.08 in linear scale

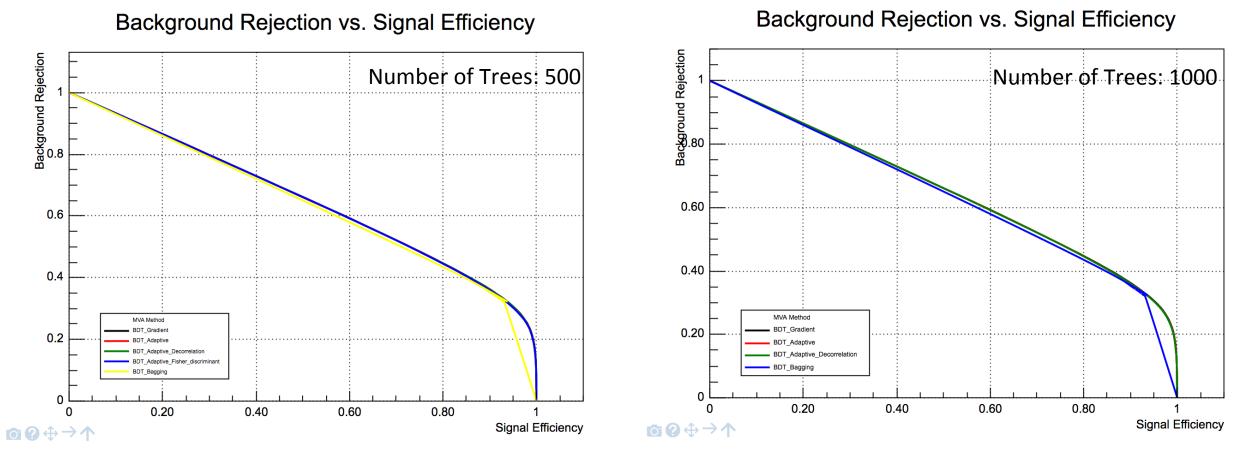
Conclusion

- BDT is better than the direct variable cut of $m_{jj} > 500$ GeV and $|\Delta \eta_{ij}| > 3$:
 - At signal efficiency of around 0.80, BDT is about 7% better than the direct cut
 - At backgorund rejection of around 0.89, BDT is about 12.5% better than the direct cut
- The final yields obtained in slide 10 need to multiply 4 to account for all decay channels: eeee, eemumu, and mumumumu
 - For 40 fb-1, BDT score cut > 0.08: N(S) = 5.2, N(B) = 1.1
 - Considering 50% reconstruction efficiency, N(S) = 2.6, N(B) = 0.5
- Potential to observe electroweak production of ZZ + 2 jets at 13 TeV (combined with other channels and using more luminosity in 2017)

ROC curve of the one of the optimal configurations

Questions?

Thank you!


Backup

Rapidity: $Y = \frac{1}{2} \cdot \log((E + Pz) / (E - Pz))$ Pseudorapidity: $\eta = -\ln(\tan(\phi/2))$ R separation = solid angular distance between two tracks $\Delta R: \Delta R(I_1, I_2) = \sqrt{(\eta(I_1) - \eta(I_2))^2 + (\phi(I_1) - \phi(I_2))^2)}$

Yield (no selection) = luminosity (40) x cross-section (S/B) Yield (after pre-selection) = luminosity (40) x cross-section (S/B) x eff(pre-selection) Yield (after final selection) = luminosity (40) x cross-section (S/B) x eff(pre-selection) x eff(S/B selection)

Uncertainty = V (number of raw events) / (number of raw events) Uncertain events = Yield x Uncertainty

Other ROC Curves obtained on Swan¹ from different training configurations

¹ SWAN (Service for Web based ANalysis) is a platform to perform interactive data analysis in the cloud.