Data Quality Monitoring with Machine Learning at CMS

Mentor: Professor Nural Akchurin Postdoc Mentor: Dr. Federico de Guio Hector F. Lacera Otalora

12/8/2016

>

UNIVERSITY OF MICHIGAN

The Compact Muon Solenoid Detector

CMS Detector

SILICON TRACKER Pixels (100 x 150 µm²) ~1m² ~66M channels Microstrips (80-180µm) ~200m² ~9.6M channels

> CRYSTAL ELECTROMAGNETIC CALORIMETER (ECAL) ~76k scintillating PbWO, crystals

PRESHOWER Silicon strips ~16m² ~137k channels

SUPERCONDUCTING SOLENOID Niobium-titanium coll carrying ~18000 A

Total weight Overall diameter Overall length Magnetic field

Pixels

ECAL

HCAL

Solenoid

Muons

Steel Yoke

~13000 tonnes

STEEL RETURN YOKE

Tracker

: 14000 tonnes : 15.0 m : 28.7 m : 3.8 T HADRON CALORIMETER (HCAL)

Brass + plastic scintillator ~7k channels CALORIMETER Steel + quartz fibres ~2k channels

FORWARD

MUON CHAMBERS

Barrel: 250 Drift Tube & 480 Resistive Plate Chambers Endcaps: 473 Cathode Strip & 432 Resistive Plate Chambers

Data Quality Monitoring for CMS

The CMS detector is complex and produces large amounts of data.

A crucial part of CMS is to identify errors and problems in the detector.

Central component: DQM GUI

- High quality histogram viewing
- Web server accessible worldwide

DQM GUI website

Run started, UTC time

03 RAW Bcn(Evn) Mismatches

08 DIGI Occupancy Cut vs LS

Ŀ:

Service -Online: Everything . 281'797 . 2'180 . 3'594'878'277 . Wed 28, 11:17 Size: Medium Y Play Reset Workspace Describe Customise Layouts (Top) / Hcal / Layouts 00 Run Summary

✓ Workspace ► -

01 RAW Bad Quality

2016 2020 -

06 DIGI Occupancy Cut

ERN

05 DIGI Occupancy vs LS

10 DIGI Occupancy Cut vs ieta

15 DIGI Timing vs iphi

Run # •

LS #

----ΞĒ Event #

02 RAW Bad Quality depth

07 DIGI Occupancy Cut vs BX

CHC

12 DIGI Amplitude vs BX

13 DIGI Timing

04 DIGI Occupancy

CMS DQM GUI (srv-c2f11-29-02)

Sep 29, 2016 at 07:46.49 UTC Federico De Guio, View details

JSON data 🔔 Link-Me

14 DIGI Timing 1.3

5

Machine Learning for better DQM

Current method: Physicists on shift check incoming data from the detector and test it against trusted references.

Better way: Implement Machine Learning techniques that recognize patterns and are able to accept or reject data in the trivial cases.

> Leave only non-trivial cases to experts.

Objects of study: Jets

Variables used:

FRN

Pt = Momentum of the jet measured in transverse plane (7 quantiles)

Eta= Jet pseudorapidity (7 quantiles)

Total = 29 Features

- Phi = azimuthal angle (7 quantiles)
- Vtx = Number of primary vertices in the event (7 quantiles)
- Cross Section = Probability that two particles will collide and react in a certain way

Discrimination Power by feature

Discrimination Power continued

- > Entire Database from 2016 runs .
 - ~ 250,000 events (lumisections).

Data has "flags" telling us if it was signal or background.

- Data has "flags" telling us which subsystem failed during that run.
- > Only 10% of bad data for 2016.
- > Used 50% of data for training and 50% of data for testing.

ERN

Definitions

- *Precision* = $\frac{tp}{tp+fp}$ (Background rejection rate) where tp is the number of true positives and fp the number of false positives.

$$-Recall = \frac{tp}{tp+fn}$$
 (Signal Efficiency)

where tp is the number of true positives and fn the number of false negatives.

Support Vector Machines

A discriminating classifier that is described by a hyperplane.

Given some training data, the classifier generates a hyperplane to classify new examples.

FRN

Training SVM with entire dataset

- Training completed in ~ 1 hour and 10 min.

- Precision = 0.97
- Recall = 0.97

Background image: Shutterstock

Boosted Decision Trees

Decision tree learning uses a decision tree as a predictive model.

> This model maps observations about an item to conclusions about the item's target value.

Gradient boosting: produces a prediction model in the form of an ensemble

FRN

Training BDT with entire data

- Training completed in ~3 minutes.
- \rightarrow Precision = 0.92
 - Recall = 0.93

Did the classifiers learn?

Post mortem Analysis

Top ten bad runs	Classified Correctly (Reason for bad Run)	Misclassified
Run (275831)	Hcal	
Run (273017)	Hcal	
Run (273318)	L1tmu	
Run (274161)	ECal	
Run (280099)		Misclassified
Run (277218)		Misclassified
Run (274157)	Pixels	
Run (277220)	Hcal	
Run (277202)		Misclassified
Run (273301)	Hcal	

ERN

Conclusions and Work to be done

After using several algorithms to perform training, SVM proved to have the best performance.

The classifier was able to recognize more often failures in the Hcal.

Proceed to a more realistic workflow in 2017.

My experience at CERN!

Questions?

Thank you!

Background image: Shutterstock