Diffractive Bremsstrahlung at High- $\boldsymbol{\beta}^{*}$ LHC

J. Chwastowski
IFJ PAN, Cracow

Bremsstrahlung

Simple three particle final state: particles at very large rapidities
A very attractive tool for high energy experiments (lumi, beam diagnostic @ HERA)

At the 13TeV LHC EM bremsstrahlung in the UPC approximation of pp has the cross-section of about 60 nb for $100 \mathrm{GeV}<\mathrm{E}_{V}<1500 \mathrm{GeV}$

V. A. Khoze et al. JINST 6 (2011) P01005

Measure bremsstrahlung accompanying elastic pp scattering The cross-section is of the order of microbarns

Considerably extended by P.Lebiedowicz and A. Szczurek (formfactors, re-scattering, ...) Phys. Rev. D87 (2013) 114013

Implemented into the GenEx generator, R. Kycia et al. arXiv: $\mathbf{1 4 1 1 . 6 0 3 5}$ [hep-ph]

Low $\boldsymbol{\beta}^{*}(\mathbf{0} .55 \mathrm{~m})$ study

Low $\boldsymbol{\beta}^{*}$ study

Angular distribution of photons:

$$
\begin{gathered}
\frac{d \sigma}{d \Theta_{\gamma}} \sim \frac{\Theta_{\gamma}}{\left(\frac{m_{p}^{2}}{E_{p}^{2}}+\Theta_{\gamma}^{2}\right)^{2}} \\
\left|\mathrm{E}_{\text {beam }}-\left(\mathrm{E}_{\mathrm{Y}, \mathrm{ZDC}}+\mathrm{E}_{\mathrm{AFP}}^{\prime}\right)\right|<\delta
\end{gathered}
$$

$E_{\gamma, Z D C}$ - photon energy measured in the ZDC
$\mathrm{E}_{\text {AFP }}^{\prime}$ - unfolded proton energy (resolution 10 GeV)
Proton energy range: $\quad 0.02 \leq \xi \leq 0.12$

Important factor: beam-AFP detector distance

$$
\beta^{*}=0.55 \mathrm{~m}
$$

AFP

Low $\boldsymbol{\beta}^{*}$ Measurement

$$
\sigma_{\text {gen,signal }}\left(100<\mathrm{E}_{\gamma}<1500 \mathrm{GeV}\right)=1.75 \mu \mathrm{~b}
$$

Photon position at the ZDC face

δ set to the triple width of the $\left(\mathrm{E}_{\gamma, \mathrm{ZDC}}+\mathrm{E}_{\mathrm{AFP}}\right)$ distribution

Backgrounds

$$
\left|\mathrm{E}_{\text {beam }}-\left(\mathrm{E}_{\mathrm{ZDC}}+\mathrm{E}_{\text {AFP }}\right)\right|<\delta+\text { "empty" ATLAS detector }
$$

"empty" ATLAS detector:

$\left.\begin{array}{l}\text { the inner tracker veto: no particle with } p_{T}>1 \mathrm{GeV} \text { and }|\eta|<2.5 \\ \text { the calorimeter veto: no particle with } E_{T}>1 \mathrm{GeV} \text { and }|\eta|<4.8\end{array}\right\}$

High mass diffractive and ND processes
 EM energy measured in the "other side" ZDC below $30 \mathrm{GeV} \quad]$ diffractive processes

Events generated with PYTHIA 8
Single and double diffractive dissociation; reported cross-section: 21.4 mb Sample: 1000000000 events

Dominating process is π^{0}-strahlung: $p+p \rightarrow p p \pi^{0}$
Use the ZDC spatial resolution to reduce its influence π^{0} decay photons not closer than 5 mm at the ZDC face at eh 13 TeV LHC

Cuts optimisation - low $\boldsymbol{\beta}^{*}$ case

Largely different shapes

Background shifted towards large values

Request:

$$
\left|E_{\text {beam }}-\left(E_{Y, Z D C}+E_{A F P}^{\prime}\right)\right|<78 \mathrm{GeV}-\text { effectively rejects background }
$$

results:

$$
\begin{aligned}
& \sigma_{\text {vis,signal }}=1.31 \mu \mathrm{~b} \\
& \sigma_{\text {vis,background }}=1.88 \mu \mathrm{~b}
\end{aligned}
$$

Cuts optimisation - low $\boldsymbol{\beta}^{*}$ case

Photon position w.r.t. the "beam position" at the ZDC face

Signal:
a clear maximum at about 14 mm , quickly falling tail

Background:
increasing with increasing R, plateau 32 mm - 44 mm , and then rapid decrease

Probability $P(r<R)$:
requirement of $\mathrm{R}=30 \mathrm{~mm}$ retains about 85% of the signal rejects about 75% of the remaining background

Hence,

$$
\begin{aligned}
& \sigma_{\text {vis,signal }}=1.12 \mu \mathrm{~b} \\
& \sigma_{\text {vis,background }}=394 \mathrm{nb}
\end{aligned}
$$

Results of the low $\boldsymbol{\beta}^{*}$ measurement

The AFP acceptance depends on the active detector - beam distance

This distance depends on the beam properties and is measured in units of the local beam width, $\sigma=0.14 \mathrm{~mm}$.

Additional 0.5 mm includes the 0.3 mm pot floor thickness and 0.2 mm floor - detector edge.

distance	$\boldsymbol{\sigma}_{\text {vis,signal }}[\mathrm{nb}]$	$\boldsymbol{\sigma}_{\text {vis,signal }}[\mathrm{nb}]$	S/B
10σ	1047	280	3.5
15σ	915	291	3.1
20σ	745	299	2.5
25σ	614	298	2.1
30σ	497	290	1.8

High $\boldsymbol{\beta}^{*}(\mathbf{9 0 m})$ study

Large $\boldsymbol{\beta}^{*}$ measurement

- Aim:
use ALFA stations and the ZDCs to perform exclusive measurement
-Event signature:
photon in the ZDC,
protons registered in both arms of the ALFA system, empty central detector

-Complication:
ALFA information on the registered proton energy not accessible energy conservation equation cannot be used
-Way out:
use p_{T} conservation at the vertex and construct a pseudo-particle

1. Energy of a proton in the photon hemspere $E_{p 1}=E_{\text {beam }}-E_{Z D C}$
2. Second proton energy $E_{p 2}=E_{\text {beam }}$
3. trace it back to $(0,0,0)$ (elastic transport matrices)

4. Use p_{T} conservation to construct a pseudo+proton accompanying photon (pseudo- p_{1})
5. Use parameterisation to transport it to the ALFA station in appropriate arm
6. Compare positions of p_{1} and pseudo- p_{1} in ALFA stations

Cuts optimisation for large $\boldsymbol{\beta}^{*}$ measurement

- cut on the photon position w.r.t. the "beam position" at the ZDC face
- check the p_{1} and pseudo- p_{1} positions

Signal:
almost all events within $\mathrm{R}<2 \mathrm{~mm}$, quickly falling

Background:
initial increase, maximum at $R \sim 3-4 \mathrm{~mm}$, and then rapid decrease

Probability $\mathrm{P}(\mathrm{r}<\mathrm{R})$:
$R<2 \mathrm{~mm}$ retains nearly 100% of the signal while rejecting about 90% of the background

Results of the $90 \mathrm{~m} \boldsymbol{\beta}^{*}$ study

The ALFA acceptance depends on the active detector - beam distance
This distance depends on the beam properties and is measured in units of the local beam width, $\sigma=0.19 \mathrm{~mm}$.
Additional 0.5 mm includes the 0.3 mm pot floor thickness and 0.2 mm floor - detector edge.

S/B deteriorates with increasing $R(\sim 14$ to $\sim 1)$

Visible cross-sections for $\mathrm{R}=0.5 \mathrm{~mm}$

For $R=0.5 \mathrm{~mm} \mathrm{~S} / B(\sim 4)$ does not depend on the detector-beam distance

Results of the $90 \mathrm{~m} \boldsymbol{\beta}^{*}$ measurement

The ALFA acceptance depends on the active detector - beam distance
This distance depends on the beam properties and is measured in units of the local beam width, $\sigma=0.19 \mathrm{~mm}$.

Additional 0.5 mm includes the 0.3 mm pot floor thickness and 0.2 mm floor - detector edge.

distance	$\sigma_{\text {vis,signal }}[\mathrm{nb}]$	$\boldsymbol{\sigma}_{\text {vis,signal }}[\mathrm{nb}]$	S/B
10σ	281	68	4.1
15σ	252	61	4.1
20σ	224	54	4.1
25σ	197	48	4.1
30σ	171	41	4.1

Summary

- Feasibility studies of the diffractive bremsstrahlung measurement at the $\beta^{*}=0.55 \mathrm{~m}$ and 90 m LHC running at the centre of mass energy of 13 TeV were presented
- $\beta^{*}=0.55$ (the AFP-ZDC case)
- The signal visible cross-section ranges between 1050 nb and 500 nb depending on the detectorbeam distance (10σ to 30σ)
- The signal to background ratio decreases from 3.5 to about 2 with increasing beam-detector distance from 10σ to 30σ
- $\beta^{*}=90 \mathrm{~m}$ (the ALFAs-ZDC case)
- Exclusive measurement
- The signal visible cross-section ranges between 50 nb and 540 nb depending on the track-pseudotrack cut (0.5 mm to 2 mm)
- The S / B ratio decreases from about 14 to about 1 with increasing track-pseudo-track distance (from 0.5 mm to 2 mm)
- The measurement could be performed assuming a single interaction per bunch crossing i.e. using the data gathered in the LHC runs with very low pile-up
- The influence of the machine background is unknown and has to be studied experimentally

Trento, Sept 26-30, 2016

Summary

Feasibility studies of the diffractive bremsstrahlung measurement at the $\beta^{*}=0.55 \mathrm{~m}$ and \subseteq

Summary

- Feasibility studies of the diffractive bremsstrahlung measurement at the $\beta^{*}=0.55 \mathrm{~m}$ and 90 m LHC running at the centre of mass energy of 13 TeV were presented
- For $\beta^{*}=0.55$ (the AFP-ZDC case)
- The signal visible cross-section ranges between 1050 nb and 500 nb depending on the detectorbeam distance (10σ to 30σ)
- The signal to background ratio decreases from 3.5 to about 2 with increasing beam-detector distance from 10 to 30σ
- For $\beta^{*}=90 \mathrm{~m}$ (the ALFAs-ZDC case)
- Exclusive measurement
- The signal visible cross-section ranges between 50 nb and 540 nb depending on the track-pseudotrack cut (0.5 mm to 2 mm)
- The S/Bvratio decreases from about 14 to about 1 with increasing track-pseudo-track distance (from 0.5 mm to 2 mm)
- The measurement could be performed assuming a single interaction per bunch crossing i.e. using the data gathered in the LHC runs with very low pile-up
- The hiriffigenice Effthe

