Diffractive Bremsstrahlung at High-β* LHC

J. Chwastowski IFJ PAN, Cracow

Supported in part by Polish National Science Centre grant UMO-2015/18/M/ST2/00098

Bremsstrahlung

Simple three particle final state: particles at very large rapidities

A very attractive tool for high energy experiments (lumi, beam diagnostic @ HERA)

At the 13TeV LHC EM bremsstrahlung in the UPC approximation of pp has the cross-section of about 60 nb for 100 GeV $< E_v < 1500$ GeV

photon

V. A. Khoze et al. JINST 6 (2011) P01005

Measure bremsstrahlung accompanying elastic pp scattering The cross-section is of the order of microbarns

Considerably extended by P.Lebiedowicz and A. Szczurek (formfactors, re-scattering, ...) Phys. Rev. D87 (2013) 114013

Implemented into the GenEx generator, R. Kycia et al. arXiv: 1411.6035 [hep-ph]

Low $\beta^*(0.55m)$ study

Low β^* study

$$E_{\text{beam}} \approx E_{\gamma} + E_{p}$$

$$\beta^* = 0.55 \text{ m}$$

Angular distribution of photons:

$$\frac{d\sigma}{d\Theta_{\gamma}} \sim \frac{\Theta_{\gamma}}{\left(\frac{m_p^2}{E_p^2} + \Theta_{\gamma}^2\right)^2}$$

$$|E_{beam} - (E_{\gamma,ZDC} + E'_{AFP})| < \delta$$

 $E_{\gamma,ZDC}$ – photon energy measured in the ZDC E'_{AFP} – unfolded proton energy (resolution 10 GeV)

Proton energy range: $0.02 \le \xi \le 0.12$

Important factor: beam-AFP detector distance

Low β* Measurement

$$\sigma_{gen,signal}(100 < E_{v} < 1500 \text{ GeV}) = 1.75 \mu b$$

Photon position at the ZDC face

 δ set to the triple width of the (E_{\gamma,ZDC}+E'_{AFP}) distribution

ZDC fiducial area in TAN

$$\delta$$
 = 78 GeV

Backgrounds

$$|E_{beam} - (E_{ZDC} + E_{AFP})| < \delta + ``empty'' ATLAS detector$$

"`empty" ATLAS detector:

the inner tracker veto: no particle with $p_T > 1$ GeV and $|\eta| < 2.5$ the calorimeter veto: no particle with $E_T > 1$ GeV and $|\eta| < 4.8$ High mass diffractive and ND processes

ZDC hadronic energy below 30 GeV (both sides)

EM energy measured in the ``other side" ZDC below 30 GeV

Mainly double diffractive processes

Events generated with PYTHIA 8

Single and double diffractive dissociation; reported cross-section: 21.4 mb Sample: 1 000 000 000 events

Dominating process is π^0 -strahlung: $p+p \rightarrow p p \pi^0$

Use the ZDC spatial resolution to reduce its influence π^0 decay photons not closer than 5 mm at the ZDC face at eh 13 TeV LHC

Cuts optimisation - low β^* case

Largely different shapes

Background shifted towards large values

Request:

$$|E_{beam} - (E_{V,ZDC} + E'_{AFP})| < 78 \text{ GeV } - \text{effectively rejects background}$$

results:

$$\sigma_{vis,signal}$$
 = 1.31 μb
 $\sigma_{vis,background}$ = 1.88 μb

Cuts optimisation - low β^* case

Photon position w.r.t. the ``beam position" at the ZDC face

Signal:

a clear maximum at abou

a clear maximum at about 14 mm, quickly falling tail

Background: increasing with increasing R, plateau 32 mm - 44 mm, and then rapid decrease

Probability P(r<R):

requirement of R = 30 mm
retains about 85% of the signal
rejects about 75% of the remaining background

Hence,

$$\sigma_{\text{vis,signal}}$$
 = 1.12 µb $\sigma_{\text{vis,background}}$ = 394 nb

J. Chwastowski, QCD at LHC: forward physics and UPC ..., Trento, Sept 26-30, 2016

Results of the low β^* measurement

The AFP acceptance depends on the active detector – beam distance

This distance depends on the beam properties and is measured in units of the local beam width, $\sigma = 0.14$ mm.

Additional 0.5 mm includes the 0.3 mm pot floor thickness and 0.2 mm floor – detector edge.

distance	$\sigma_{\text{vis,signal}}$ [nb]	σ _{vis,signal} [nb]	S/B
10σ	1047	280	3.5
15σ	915	291	3.1
20σ	745	299	2.5
25σ	614	298	2.1
30σ	497	290	1.8

J. Chwastowski, QCD at LHC: forward physics and UPC ..., Trento, Sept 26-30, 2016

High $\beta^*(90m)$ study

Large β^* measurement

 $\beta^* = 90 \text{m}$

• Aim:

use ALFA stations and the ZDCs to perform exclusive measurement

•Event signature:

photon in the ZDC, protons registered in both arms of the ALFA system, empty central detector

•Complication:

ALFA information on the registered proton energy not accessible energy conservation equation cannot be used

•Way out:

use p_T conservation at the vertex and construct a pseudo-particle

- 1. Energy of a proton in the photon hemspere $E_{p1} = E_{beam} E_{ZDC}$
- 2. Second proton energy $E_{p2} = E_{beam}$
- 3. trace it back to (0,0,0) (elastic transport matrices)
- 4. Use p_T conservation to construct a pseudo+proton accompanying photon (pseudo- p_1)
- 5. Use parameterisation to transport it to the ALFA station in appropriate arm
- 6. Compare positions of p₁ and pseudo-p₁ in ALFA stations

Cuts optimisation for large β^* measurement

- cut on the photon position w.r.t. the ``beam position" at the ZDC face
- check the p₁ and pseudo-p₁ positions

Signal: almost all events within R < 2 mm, quickly falling

Background:
initial increase,
maximum at R ~ 3-4 mm,
and then rapid decrease

Probability P(r<R):

R < 2 mm retains nearly 100% of the signal while rejecting about 90% of the background

Results of the 90m β^* study

The ALFA acceptance depends on the active detector – beam distance

This distance depends on the beam properties and is measured in units of the local beam width, $\sigma = 0.19$ mm.

Additional 0.5 mm includes the 0.3 mm pot floor thickness and 0.2 mm floor – detector edge.

S/B deteriorates with increasing R (~14 to ~1)

For R = $0.5 \text{ mm S/B}(^{\sim}4)$ does not depend on the detector-beam distance

J. Chwastowski, QCD at LHC: forward physics and UPC ..., Trento, Sept 26-30, 2016

Results of the 90m β^* measurement

The ALFA acceptance depends on the active detector – beam distance

This distance depends on the beam properties and is measured in units of the local beam width, $\sigma = 0.19$ mm.

Additional 0.5 mm includes the 0.3 mm pot floor thickness and 0.2 mm floor – detector edge.

distance	$\sigma_{ m vis, signal}$ [nb]	σ _{vis,signal} [nb]	S/B
10σ	281	68	4.1
15σ	252	61	4.1
20σ	224	54	4.1
25σ	197	48	4.1
30σ	171	41	4.1

J. Chwastowski, QCD at LHC: forward physics and UPC ..., Trento, Sept 26-30, 2016

Summary

- Feasibility studies of the diffractive bremsstrahlung measurement at the β^* = 0.55 m and 90m LHC running at the centre of mass energy of 13 TeV were presented
- $\beta^* = 0.55$ (the AFP-ZDC case)
 - The signal visible cross-section ranges between 1050 nb and 500 nb depending on the detector-beam distance (10 σ to 30 σ)
 - The signal to background ratio decreases from 3.5 to about 2 with increasing beam-detector distance from 10σ to 30σ
- $\beta^* = 90$ m (the ALFAs-ZDC case)
 - Exclusive measurement
 - The signal visible cross-section ranges between 50 nb and 540 nb depending on the track-pseudotrack cut (0.5mm to 2 mm)
 - The S/B ratio decreases from about 14 to about 1 with increasing track-pseudo-track distance (from 0.5 mm to 2 mm)
- The measurement could be performed assuming a single interaction per bunch crossing i.e. using the data gathered in the LHC runs with very low pile-up
- The influence of the machine background is unknown and has to be studied experimentally

Summary

Feasibility studies of the diffractive bremsstrahlung measurement at the β^* = 0.55 m and 9

Summary

- Feasibility studies of the diffractive bremsstrahlung measurement at the β^* = 0.55 m and 90m LHC running at the centre of mass energy of 13 TeV were presented
- For $\beta^* = 0.55$ (the AFP-ZDC case)
 - The signal visible cross-section ranges between 1050 nb and 500 nb depending on the detector-beam distance (10σ to 30σ)
 - The signal to background ratio decreases from 3.5 to about 2 with increasing beam-detector distance from 10σ to 30σ
- For β^* = 90m (the ALFAs-ZDC case)
 - Exclusive measurement
 - The signal visible cross-section ranges between 50 nb and 540 nb depending on the track-pseudotrack cut (0.5mm to 2 mm)
 - The S/Bvratio decreases from about 14 to about 1 with increasing track-pseudo-track distance (from 0.5 mm to 2 mm)
- The measurement could be performed assuming a single interaction per bunch crossing i.e. using the data gathered in the LHC runs with very low pile-up
- The machine background is unknown and has to be studied experimentally forward physics and UPC ...,
 Trento, Sept 26-30, 2016