Recent & planned measurements from TOTEM

K. Osterberg, Department of Physics & Helsinki Institute of Physics, University of Helsinki

> on behalf of TOTEM collaboration

Trento meeting 26.9.2016

Outline:

- Introduction
- Elastic scattering
- Total, inelastic & elastic cross-section
- Hard diffraction & exclusive reactions (with CMS)

TOTEM projects & physics programme

LHC experiment dedicated to measurement of: total cross-section, elastic scattering, soft diffraction & forward multiplicity common features: rapidity gaps, particles in very forward region, surviving protons > special detectors

TOTEM + CMS (special runs at high b*)

both experiments at LHC Interaction Point 5 excellent pseudorapidity coverage of both tracking & calorimetry: optimal for studies of exclusive production & hard diffraction cooperation mode: independent DAQs, exchange of triggers, offline event merging

CT-PPS (CMS-TOTEM Precision Proton Spectrometer, standard runs)

proton detectors fully integrated in CMS exclusive production & BSM searches

dedicated detectors for high-pileup environment (timing, strips ® pixels)

® see Jan Kaspars talk tomorrow

Experimental apparatus @ LHC IP5

TOTEM

Roman Pots - Si mstrip sensors: elastic & diffractive protons (proton trigger)

Experimental apparatus @ LHC IP5

TOTEM

Roman Pots - Si mstrip sensors: elastic & diffractive protons (proton trigger)

LHC Optics & proton acceptance

t » - $p^2 Q^{*2}$: four-momentum transfer squared; x = Dp/p: fractional momentum loss

 $> 10^{33} \text{ cm}^{-2} \text{ s}^{-1} \leftarrow$

 $L \mu \frac{1}{b^*}$

 $\sim 10^{27}$ cm⁻² s⁻¹

Diffraction:

x > ~0.03, low cross-section processes (hard diffraction) Elastic scattering: large |t| Diffraction: all x if $|t| > 10^{-2}$ GeV², soft & semi-hard diffraction Elastic scattering: low to mid |t| Total cross-Section

Elastic scattering: very low |t|, Coulomb-Nuclear Interference Total cross-Section

Roman Pot system 2015 ®

Movable beam pipe section allowing insertion of detector to O(mm) distance from the beam

High luminosity standard running:

2-3 horizontal RPs (+ 4 vertical for RP alignment runs)

Special high b* runs (90 m, 1 km, 2.5 km):

4-6 vertical RPs & 2-3 horizontal RPs

2010-13 data: only RP220

Elastic pp scattering: selection & data sets

Selected based on topology, low |x|, anti-collinearity & vertex

Data sets at different conditions to measure over as wide |t|-range as possible

Elastic pp scattering: data summary & trends

different |t|-ranges probes different physics regimes:
Coulomb interference, diffractive cone, dipbump, transition to pQCD etc...

Trends:

- dip position in |t| decreases with increasing \sqrt{s}
- Forward slope $B = \frac{d}{dt} \ln(\frac{d\sigma}{dt}\Big|_{t=0})$ increase with \sqrt{s}

Elastic pp scattering: non-exponentiality at low |t|

- Diffraction cone "looks almost exponential"

 Magnify deviation > show (ds/dt ref. exp.)/ref. exp.
- b* = 90 m measurements at different energies (stat. uncert. only)

Non-exponentiality observed at 8 & 13 TeV

- 8 TeV: 7s significance —
- 13 TeV: preliminary high significance
- observed cross-section non-exponential

ds/dt = hadronic + Coulomb + interference

Nucl. Phys. B 899 (2015) 527

Coulomb-hadronic interference region

Elastic scattering at very low |t| 3 6 ×10-4 GeV²: 0.4 M at 8 TeV in 2012

- special optics developed for measurements at very low |t|: b* = 1000 m
- RP approach very close: 3s

Possibility to study interference, r, s_{tot}, hadronic cross-section ...

Coulomb-hadronic interference

Interference formula:

- simplified West-Yennie (SWY): QFT framework, traditional but simplified (require constant hadronic phase, constant exponential)
- Cahn or Kundrat-Lokajicek (KL): eikonal framework, no explicit simplifications (no requirement on hadronic phase & exponential)

Interference > sensitivity to phase of hadronic amplitude in cross-section

- include t-dependence of phase
- constraints from data \triangleright determine \mathbf{r} (~ phase at $|\mathbf{t}| = 0$)

r
$$\circ$$
 \hat{A} F^{H}/\hat{A} $F^{H}|_{t=0}$

Coulomb-hadronic interference – analysis strategy

Central question:

Observed non-exponentiality due to hadronic Coulomb or both

- . fits with 2 different assumptions on hadronic amplitude
 - purely-exponential non-exponentiality due to Coulomb (& interference)

$$|F| = a \exp(b_1 t)$$

- flexible enough to describe non-exponentiality even without Coulomb

$$|F^{H}| = a \exp(b_1 t + b_2 t^2 + b_3 t^3)$$

- role of |t|-dependence of hadronic phase?
 - large impact at low |t|
 - controls behaviour in impact parameter space (b)
 - consider 2 options:
 - + central: black
 - + peripheral: blue

Coulomb-hadronic interference – fits

Purely-exponential hadronic amplitude

- Central phase excluded (with SWY, Cahn & KL) P application of SWY formula excluded too
- Periheral phase not explicitly excluded by data but disfavoured
 - r value outside a consistent pattern of other fits & theoretical predictions
 - several theoretical reasons for nonexpontential hadronic amplitude

Non-exponential hadronic amplitude

- Both central & peripheral phase
 - compatible with data b centrality not a necessary description for elastic scattering

Not one single hadronic scattering amplitude b multiple exchange channels for elastic scattering

r vs Ös

First direct r determination at LHC (8 TeV): $r = 0.12 \pm$

Elastic pp scattering: structures at high |t|?

Very preliminary 13 TeV data give already very strong indications

model predictions:

oscillations in almost each model

No structures at high-|t|!

- Rules out many modules
- Rules out "optical" models?
- Physics interpretation: transition between diffraction & pQCD a la Donnachie-Landshoff

Total pp cross-section: methods & results

Excellent agreement between 7 TeV s measurements:

$$\sigma_{tot}^{2} = \frac{16\pi}{(1+\rho^{2})} \frac{1}{\mathcal{L}} \left(\frac{dN_{el}}{dt}\right)_{t=0}$$

$$\text{testing validity of optical}$$

$$\text{theorem at } \sim 3.5 \% \text{ level}$$

$$\sigma_{tot} = \sigma_{el} + \sigma_{inel}$$

based on elastic scattering > low mass diffraction independent

 $s_{total} = 98.3 \text{ mb} \pm 2.0 \text{ mb}$ EPL 96 (2011) 21002

 $s_{total} = 98.6 \text{ mb} \pm 2.3 \text{ mb}$ EPL 101 (2013) 21002

optical theorem & r independent

 $s_{total} = 99.1 \text{ mb} \pm 4.3 \text{ mb}$ EPL 101 (2013) 21004

$$\sigma_{tot} = \frac{16\pi}{(1+\rho^2)} \frac{(dN_{el}/dt)_{t=0}}{(N_{el}+N_{inel})} \quad \textit{L} \; \text{independent}$$

s_{total} = 98.1 mb ± 2.4 mb EPL 101 (2013) 21004

Combining 8 TeV $b^* = 90 \text{ m } \& 1$ km data: Improved extrapolation of hadronic amplitude to t = 0(Coulomb interference measured) & simultaneous r determination

s_{total} = 101.7 mb ± 2.9 mb PRL 111(2013) 012001 8 TeV 1 compatible

 $s_{total} = 102.9 \text{ mb} \pm 2.3 \text{ mb}$ (central hadronic phase)

 $s_{total} = 103.0 \text{ mb} \pm 2.3 \text{ mb}$ (peripheral hadronic phase) CERN-PH-EP-2015-235, accepted by EPJC

8 TeV

7 TeV

pp cross-sections: summary

Ös = 2.76 and 13 TeV analyses on-going

$3g J^{PC} = 1^{-1} search$

Originally predicted as Odderon in Regge theory framework [Lukaszuk, Nicolescu], confirmed in QCD [Vacca, Braun, Dosch et al.]: Colorless 3-gluon bound state with strong internal coupling

Theory: 3g J^{PC}=1⁻⁻ existence would imply for pp elastic scattering:

- § persistence of dip at LHC energies, faster increase of s_{tot} with \sqrt{s}
- § non-constant hadronic phase & low-t deviation from pure exponential
- § faster decrease of r with \sqrt{s} : @14 TeV r » 0.14 (without 3g J^{PC} = 1⁻⁻) vs r » 0.10 (with 3g J^{PC} = 1⁻⁻); TOTEM @8 TeV: r = 0.12 ± 0.03 • need r with ± 0.01 precision @13 TeV
- § pQCD (without oscillatory effects) at large |t|
- \triangleright TOTEM measurements consistent with existence of 3g J^{PC} = 1⁻⁻

Coulomb-hadronic interference 13 TeV:

TOTEM

- equality point (Coulomb = nuclear)
 has optimal sensitivity to ρ
 b* = 2.5 km with RP at 3s
- ± 0.01 precision on r requires
 ≤ 1% error on data points Þ
 successful data taking last week

(Exclusive) central diffraction

$$p_1(x_1)$$
 $M_X^2 = x_1 x_2 s$

X at rapidity y_x gg collider

$$y_{\mathbf{X}} = \frac{1}{2} \ln \frac{\mathbf{x}_1}{\mathbf{x}_2}$$

 ø exchange of colour singlets with vacuum quantum numbers

 Þ selection rules for system X: J^{PC} = 0++, 2++, ...

with double-arm proton detection

 $b^* = 90 \text{ m}$: all M_X , t > 0.02 (RP at 10s)

© Comparison of prediction from forward to central system:

 $M(pp) = ? M(central), p_{T,z}(pp) = ? p_{T,z}(central), vertex(pp) = ? vertex(central)$

- prediction of rapidity gaps from proton x's : $Dh_{1,2} = -lnx_{1,2}$ Examples (0.4 pb⁻¹ reach):
- Exclusive low mass resonance and glueball studies (see next slide)
- Exclusive charmonium production: ~ O(few 100 events)
- (Non-exclusive) central diffractive jets ($p_{jet}^T > 30/40 \text{ GeV}$): x 100 statistics (2012)
- Missing mass & momentum signals (high mass): x 100 statistics (2012)
- Low mass exclusive central diffractive jets (p^T_{iet} > 40 GeV): ~ O(10 events)

CMS-TOTEM joint data taking b* = 90 m

CMS: Fill 4509 Luminosity

CMS-TOTEM 13 TeV, Oct 2015 β* = 90m, low Pile Up L1 Trigger exchange Independent DAQs, Offline merging TOTEM DAQ running at ~ 50 kHz CMS HLT running at ~ 8 kHz

Triggers:

- Dedicated exclusive low mass resonance trigger
- Inclusive central diffractive trigger (non-diagonal configuration)
- Central CMS triggers (dijets pT ³ 40 GeV, dimuons, dielectrons)
- Minimum bias & Zerobias

Integrated Luminosity

LHC delivered: 0.74/pb

CMS recorded: 0.68/pb

Totem recorded: 0.4/pb

Totem Trigger & CMS data: 0.55/pb

TOTEM

Low mass resonance & glueball studies

CD@LHC: $x \sim 10^{-3} - 10^{-4}$ gluons \triangleright pure gluon pair \triangleright M_X $\sim 1 - 4$ GeV Candidates for 0⁺⁺ glueball: $f_0(1500)$ or $f_0(1710)$; lattice QCD favours $f_0(1710)$

Decays and branching ratios of $f_0(1710)$ poorly explored (unlike $f_0(1500)$) à Goal: characterize $f_0(1710)$ and compare with known $f_0(1500)$

CMS+TOTEM advantages:

- Good particle ID & mass resolution (s(M) ~ 30 MeV) using CMS tracker
- $^{\circ}$ RP protons assure exclusivity ($p_{T,RP} \sim p_{T,tracker}$)

CMS+TOTEM data from 2012: ($L = 3 \text{ nb}^{-1}$ of double arm RP trigger) show sensitivity to $f_0(1710)$ à r^0r^0 à $4p^{\pm}$ (channel not yet reported in PDG)

Dedicated "TOTEM0" trigger: double arm RP & T2 Veto & at least 1 track in CMS tracker

 $b^* = 90 \text{ m common CMS-TOTEM physics runs}$

100 M TOTEM0 triggers in ~0.4 pb⁻¹ Þ ´ 500-750 statistics (2012) Þ should allow full decay characterization

SD processes at $b^* = 90 \text{ m}$

Single diffractive processes: study rapidity gap survival probability Triggered using CMS lepton & jet triggers
Visible s estimate at $\ddot{C}s = 13$ TeV (both proton + central object)

CMS PAS FSQ-14-001, TOTEM-NOTE-2014-002

- . J/y production (POMPYT): m/m $3.05 < M_{uu} < 3.15 \text{ GeV}$,
- 0.4 pb^{-1} : $120 \pm 4 \text{ events}$
- W production (POMWIG): m^{\ddagger}/e^{\pm} ($p_T > 20$ GeV), $60 < M_T < 110$ GeV
- 0.4 pb^{-1} : $14 \pm 1 \text{ events}$
- SD jet production: p_{T.iet} > 40 GeV
- 0.4 pb⁻¹: O(10k) events

Background removal demonstrated on common CMS+TOTEM b* = 90 m data at $\ddot{\text{C}}$ s = 8 TeV (SD dijets)

Missing mass & momentum searches

new physics that escaped standard searches?

preliminary search on existing CMS-TOTEM data 2012 b* = 90 m samples ($\sim 0.05 \text{ pb}^{-1} \otimes \text{m} \approx 0.05$)

several topologies examined for missing mass candidates (no evident signal found)

- M_{Pflow} (particle flow + p_{miss}) $\leq M_{pp}$
- p_{Pflow} (particle flow) $\neq p_{pp}$
- p_{miss} pointing in the instrumented region
- |h| > 6.5 to be forbidden by $x_{1,2}$ measurements
- ~ 10 candidates with DM = $M_{pp} M_{Pflow} > 250$ GeV (mostly without jet activity)

Missing mass & momentum

Explaination of observed events

- N*® pp⁰ decays, where p⁰ goes undetected
- pileup? Additional protection available in 2016 using precise timing
- Detector 'inefficiencies'? unlikely
- Acceptance gaps between detectors?
- · High energy neutrinos?
- Neutral particle flow in T2? unlikely
- Real escaping energy?

search for missing mass in 150 < M_{miss} < 700 TeV at $\ddot{O}s$ = 13 TeV L_{int} » 50 pb⁻¹ of b* = 90 m data would allow search for O(pb) processes Future tests using 2015 b* = 90 m data

Summary

- Elastic scattering: extensive studies published based on 7 & 8 TeV data (Run I, 2010-13), latest Coulomb-hadronic interference; analysis of 2.76 & 13 TeV data on-going including search for the Odderon
- s_{tot}, s_{inel} & s_{el}: 7 & 8 TeV result (Run I, 2010-13) published with several different methods, latest result taking effects of Coulomb-hadronic interference into account & simultaneous determination of r; analysis of 2.76 & 13 TeV data on-going
- Exclusive production & hard diffraction (CMS-TOTEM): high potential due to large combined h coverage, SD dijet 8 TeV analysis soon to be published; analysis 13 TeV data on-going

Stay tuned for more results!

Backup

Beam-Based RP Alignment

Standard Procedure for LHC Collimators

A primary collimator cuts a sharp The top RP approaches The last 10 mm step produces a spike in a edge into the beam, symmetrical to the beam until it Beam Loss Monitor downstream of the RP the centre touches the edge Beam loss data [18/05/11 14:14:18] 5.0E-6 4.0E-6 3.0E-6 ₹ 2.0E-6 1.0E-6 bottom RF 14:13:00 14:13:20 14:13:40 Jaw positions [18/05/11 14:14:19] 3.00 2.50 1.50 10 mm step 14:12:20 14:13:00 14:13:20 time (hh:mm:ss)

When both top and bottom pots are touching the beam edge:

- · they are at the same number of sigmas from the beam centre as the collimator
- · the beam centre is exactly in the middle between top and bottom pot
- à Alignment of the RP windows relative to the beam (~ 20 mm)

Proton transport & reconstruction

(x*, y*): vertex position

 (q_x^*, q_y^*) : emission angle: $t \gg -p^2 (q_x^{*2} + q_y^{*2})$ x = Dp/p: momentum loss (elastic case: x = 0)

Product of all lattice element matrices

Reconstruction of proton kinematics = inversion of transport equation Transport matrix elements depend on $x \in \text{non-linear problem (except in elastic case!)}$

Excellent optics understanding needed.

Optics reconstruction

Machine imperfections alter the optics:

- Strength conversion error, $\sigma(B)/B \approx 10^{-3}$
- Beam momentum offset, $\sigma(p)/p \approx 10^{-3}$
- Magnet rotations, $\sigma(\phi) \approx 1$ mrad
- Magnetic field harmonics, $\sigma(B)/B \approx 10^{-4}$
- Power converter errors, $\sigma(I)/I \approx 10^{-4}$
- Magnet positions Δx, Δy ≈ 100 μm

$$t(v_x, L_x, L_y, ..., p) = -p^2 \cdot (\Theta_x^{*2} + \Theta_y^{*2})$$

→ Precise model of the LHC optics is indispensable!

Novel method from TOTEM:

- Use measured proton data from RPs
- Based on kinematics of elastic candidates
- Published in New Journal of Physics
- http://iopscience.iop.org/1367-2630/16/10/103041/

