Model independent analysis method for the differential cross-section of elastic pp scattering T. Csörgő^{1,2}, T. Novák¹ and A. Ster² ¹ EKU KRC, Gyöngyös, Hungary ² Wigner RCP, Budapest, Hungary #### **OUTLINE** #### **Model-independent shape analysis:** - General introduction - Edgeworth, Laguerre - Levy expansions - Application in elastic pp scattering #### **Summary** # **MODEL - INDEPENDENT SHAPE ANALYIS I.** # Model-independent method, proposed to analyze Bose-Einstein correlations IF experimental data satisfy - The measured data tend to a constant for large values of the observable Q. - There is a *non-trivial structure* at some definite value of Q, shift it to Q = 0. # Model-independent, but experimentally testable: - t = Q R - dimensionless scaling variable - approximate form of the correlations w(t) - Identify w(t) with a measure in an abstract Hilbert-space $$\int dt w(t) h_n(t) h_m(t) = \delta_{n,m},$$ $$f(t) = \sum_{n=0}^{\infty} f_n h_n(t),$$ $$f_n = \int dt w(t) f(t) h_n(t).$$ e.g. $t = Q_I R_I$ # **MODEL - INDEPENDENT SHAPE ANALYIS II.** $$C_2(\mathbf{k}_1, \mathbf{k}_2) = \frac{N_2(\mathbf{k}_1, \mathbf{k}_2)}{N_1(\mathbf{k}_1) N_1(\mathbf{k}_2)},$$ $$R_2(\mathbf{k}_1, \mathbf{k}_2) = C_2(\mathbf{k}_1, \mathbf{k}_2) - 1.$$ Let us assume, that the function $g(t) = R_2(t)/w(t)$ is also an element of the Hilbert space H. This is possible, if $$\int dt \, w(t)g^2(t) = \int dt \, \left[R_2^2(t)/w(t) \right] < \infty, \tag{6}$$ Then the function g can be expanded as $$g(t) = \sum_{n=0}^{\infty} g_n h_n(t),$$ $$g_n = \int dt \, R_2(t) h_n(t).$$ From the completeness of the Hilbert space, if g(t) is also in the Hilbert space: $$R_2(t) = w(t) \sum_{n=0}^{\infty} g_n h_n(t).$$ T. Csörgő and S: Hegyi, hep-ph/9912220, T. Csörgő, hep-ph/001233 # **MODEL - INDEPENDENT SHAPE ANALYIS III.** $$C_2(\mathbf{k}_1, \mathbf{k}_2) = \frac{N_2(\mathbf{k}_1, \mathbf{k}_2)}{N_1(\mathbf{k}_1) N_1(\mathbf{k}_2)},$$ $$C_2(t) = \mathcal{N}\left\{1 + \lambda_w w(t) \sum_{n=0}^{\infty} g_n h_n(t)\right\}$$ #### **Model-independent AND experimentally testable:** - method for any approximate shape w(t) - the core-halo intercept parameter of the CF is - coefficients by numerical integration (fits to data) - condition for applicability: experimentally testabe $$\lambda_* = \lambda_w \sum_{n=0}^{\infty} g_n h_n(0)$$ $$g_n = \int dt \, R_2(t) h_n(t)$$ $$\int dt \left[R_2^2(t)/w(t) \right] < \infty$$ # **GAUSSIAN w(t): EDGEWORTH EXPANSION** $$t = \sqrt{2}QR_E,$$ $$w(t) = \exp(-t^2/2),$$ $$\int_{-\infty}^{\infty} dt \, \exp(-t^2/2) H_n(t) H_m(t) \propto \delta_{n,m},$$ $$H_n(t) = \exp(t^2/2) \left(-\frac{d}{dt}\right)^n \exp(-t^2/2).$$ $H_2(t) = t^2 - 1,$ $H_3(t) = t^3 - 3t,$ $$H_1(t) = t,$$ $H_2(t) = t^2 - 1,$ $H_3(t) = t^3 - 3t,$ $H_4(t) = t^4 - 6t^2 + 3, ...$ $$C_2(Q) = \mathcal{N} \left\{ 1 + \lambda_E \exp(-Q^2 R_E^2) \times \left[1 + \frac{\kappa_3}{3!} H_3(\sqrt{2}QR_E) + \frac{\kappa_4}{4!} H_4(\sqrt{2}QR_E) + \dots \right] \right\}.$$ #### 3d generalization straightforward Applied by NA22, L3, STAR, PHENIX, ALICE, CMS (LHCb) # **EXPONENTIAL w(t): LAGUERRE EXPANSIONS** # Model-independent but experimentally tested: - *w*(*t*) exponential - t. dimensionless - Laguerre polynomials $$t = QR_L,$$ $$w(t) = \exp(-t)$$ $\int dt \, R_2^2(t) \exp(+t) < \infty,$ $$\int_{0}^{\infty} dt \, \exp(-t) L_n(t) L_m(t) \propto \delta_{n,m},$$ $$L_n(t) = \exp(t) \frac{d^n}{dt^n} (-t)^n \exp(-t).$$ $L_0(t) = 1,$ $L_1(t) = t - 1,$ $$C_2(Q) = \mathcal{N}\left\{1 + \lambda_L \exp(-QR_L) \left[1 + c_1 L_1(QR_L) + \frac{c_2}{2!} L_2(QR_L) + \dots\right]\right\}$$ #### First successful tests - NA22, UA1 data - convergence criteria satisfied - intercept parameter ~ 1 $$\lambda_* = \lambda_L [1 - c_1 + c_2 - \dots],$$ $$\delta^2 \lambda_* = \delta^2 \lambda_L \left[1 + c_1^2 + c_2^2 + \dots \right] + \lambda_L^2 \left[\delta^2 c_1 + \delta^2 c_2 + \dots \right]$$ # STRETCHED w(t): LEVY EXPANSIONS $$w(t|\alpha) = \exp(-t^{\alpha}) = \exp(-Q^{\alpha}R^{\alpha})$$ #### **Model-independent but:** - Levy: stretched exponential - generalizes exponentials and Gaussians - ubiquoutous in nature - How far from a Levy? - Need new set of polynomials orthonormal to a Levy weight $$L_1(x \mid \alpha) = \det \begin{pmatrix} \mu_{0,\alpha} & \mu_{1,\alpha} \\ 1 & x \end{pmatrix}$$ $$L_2(x \mid \alpha) = \det \begin{pmatrix} \mu_{0,\alpha} & \mu_{1,\alpha} & \mu_{2,\alpha} \\ \mu_{1,\alpha} & \mu_{2,\alpha} & \mu_{3,\alpha} \\ 1 & x & x^2 \end{pmatrix}$$ $$\mu_{r,\alpha} = \int_0^\infty dx \ x^r f(x \mid \alpha) = \frac{1}{\alpha} \Gamma(\frac{r+1}{\alpha})$$ # STRETCHED w(t): LEVY EXPANSIONS In case of $\alpha = 1$, in 1 dimension Laguerre expansion is recovered $$L_0(t \mid \alpha = 1) = 1,$$ $L_1(t \mid \alpha = 1) = t - 1,$ $L_2(t \mid \alpha = 1) = t^2 - 4t + 2.$ These reduce to the Laguerre expansions and Laguerre polynomials. # STRETCHED w(t)= $\exp(-t^{\alpha})$: LEVY EXPANSIONS In case of $\alpha = 2$, a new formulae for one-sided Gaussians: $$L_{0}(t \mid \alpha = 2) = \frac{\sqrt{\pi}}{2},$$ $$L_{1}(t \mid \alpha = 2) = \frac{1}{2} \{ \sqrt{\pi}t - 1 \},$$ $$L_{2}(t \mid \alpha = 2) = \frac{1}{32} \{ (\pi - 2)t^{2} - \sqrt{\pi}t + 2 - \frac{\pi}{2} \}.$$ Provides a new expansion around a Gaussian shape that is defined for the non-negative values of *t* only. Edgeworth expansion different, its around two-sided Gaussian, includes non-negative values of *t* also. # **EXAMPLE, LAGUERRE EXPANSIONS** T. Csörgő and S: Hegyi, hep-ph/9912220, T. Csörgő, hep-ph/001233 # **EXAMPLE, LEVY EXPANSIONS** #### **Model-independent but:** - Levy generalizes exponentials and Gaussians - ubiquoutous in nature - How far from a Levy? - Not necessarily positive definit! $$L_1(x \mid \alpha) = \det \begin{pmatrix} \mu_{0,\alpha} & \mu_{1,\alpha} \\ 1 & x \end{pmatrix}$$ $$L_2(x \mid \alpha) = \det \begin{pmatrix} \mu_{0,\alpha} & \mu_{1,\alpha} & \mu_{2,\alpha} \\ \mu_{1,\alpha} & \mu_{2,\alpha} & \mu_{3,\alpha} \\ 1 & x & x^2 \end{pmatrix}$$ $$\mu_{r,\alpha} = \int_0^\infty dx \ x^r f(x \mid \alpha) = \frac{1}{\alpha} \Gamma(\frac{r+1}{\alpha})$$ Lévy polynomials of first and third order times the weight function $e^{-x^{\alpha}}$ for $\alpha = 0.8, 1.0, 1.2, 1.4$. 1st-order Lévy polynomial $$\gamma \left[1 + \lambda e^{-R^{\alpha}Q^{\alpha}} [1 + c_1 L_1(Q|\alpha, R)] \right]$$ 3rd-order Lévy polynomial $\gamma \left[1 + \lambda e^{-R^{\alpha}Q^{\alpha}} [1 + c_1 L_1(Q|\alpha, R) + c_3 L_3(Q|\alpha, R)] \right]$ M. de Kock, H. C. Eggers, T. Cs: arXiv:1206.1680v1 [nucl-th] # LEVY EXPANSIONS for POSITIVE DEFINIT FORMS #### experimental conditions: - (i) The correlation function tends to a constant for large values of the relative momentum Q. - (ii) The correlation function deviates from its asymptotic, large Q value in a certain domain of its argument. - (iii) The two-particle correlation function is related to a Fourier transformed space-time distribution of the source. #### **Model-independent but:** - Assumes that Coulomb can be corrected - No assumptions about analyticity yet - For simplicity, consider 1d case first - For simplicity, consider factorizable x k - Normalizations : - density - multiplicity - single-particle spectra $$C_2(\mathbf{k}_1, \mathbf{k}_2) = \frac{N_2(\mathbf{k}_1, \mathbf{k}_2)}{N_1(\mathbf{k}_1) N_1(\mathbf{k}_2)}$$ $$S(x,k) = f(x) g(k)$$ $$\int dx f(x) = 1, \qquad \int dk g(k) = \langle n \rangle,$$ $$N_1(k) = \int \mathrm{d}x \, S(x,k) = g(k).$$ T. Cs, S. Hegyi, W.A. Zajc, EPJ C36, 67 (2004) # **MINIMAL MODEL ASSUMPTION: LEVY** #### **Model-independent but:** - not assumes analyticity - C₂ measures a modulus squared Fouriertransform vs relative momentum $$C_2(k_1, k_2) = 1 + |\tilde{f}(q_{12})|^2,$$ - Correlations non-Gaussian - Radius not a variance • $$0 < \alpha \le 2$$ $$\tilde{f}(q_{12}) = \int \mathrm{d}x \, \exp(\mathrm{i}q_{12}x) \, f(x),$$ $$C(q; \alpha) = 1 + \lambda \exp(-|qR|^{\alpha}).$$ ### UNIVARIATE LEVY EXAMPLES #### Include some well known cases: - $\alpha = 2$ - Gaussian source, Gaussian C₂ $$f(x) = \frac{1}{(2\pi R^2)^{1/2}} \exp\left[-\frac{(x - x_0)^2}{2R^2}\right]$$ $$C(q) = 1 + \exp\left(-q^2 R^2\right)$$ - \bullet $\alpha = 1$ - Lorentzian source, exponential C₂ $$f(x) = \frac{1}{\pi} \frac{R}{R^2 + (x - x_0)^2},$$ $$C(q) = 1 + \exp(-|qR|).$$ - asymmetric Levy: - asymmetric support - Streched exponential $$f(x) = \sqrt{\frac{R}{8\pi}} \frac{1}{(x - x_0)^{3/2}} \exp\left(-\frac{R}{8(x - x_0)}\right)$$ $$x_0 < x < \infty,$$ $$C(q) = 1 + \exp\left(-\sqrt{|qR|}\right).$$ T. Cs, hep-ph/0001233, T. Cs, S. Hegyi, W.A. Zajc, EPJ C36, 67 (2004) # Non-Exponential Differential Cross-Section To study the detailed behaviour of the differential cross-section, a series of fits has been made using the parametrisation: $$\frac{\mathrm{d}\sigma}{\mathrm{d}t}(t) = \left. \frac{\mathrm{d}\sigma}{\mathrm{d}t} \right|_{t=0} \exp\left(\sum_{i=1}^{N_b} b_i t^i \right),\tag{15}$$ which includes the pure exponential $(N_b = 1)$ and its straight-forward extensions $(N_b = 2, 3)$. Nuclear Physics B 899 (2015) 527-546 # However, this method does not extrapolate well # LEVY EXPANSION FIT TO NON-EXPONENTIALS $$z=\sqrt{|t|}\,R$$ $$\frac{d\sigma}{dt} = \frac{d\sigma}{dt}\Big|_{t=0} \exp(-z^{\alpha}) |1 + c_1 L_1(z|\alpha) + c_2 L_2(z|\alpha) + \dots|^2$$ # Levy expansion method works in a large t interval # FIT RESULTS - LEVY EXPONENTS # Fit range: #### Up to $-t=10 \text{ GeV}^2$ | Energy | α | $\chi^2/{\rm NDF}$ | CL | |------------------|-------------------|--------------------|-------| | (GeV) | | | | | 23.5 | 1.036 ± 0.011 | 159.9/127 = 1.3 | 0.026 | | 30.5 | 1.077 ± 0.009 | 307.9/166 = 1.9 | 0.000 | | 44.6 | 1.017 ± 0.007 | 744.6/198 = 3.8 | 0.000 | | 52.8 | 0.856 ± 0.008 | 112.1/111 = 1.0 | 0.453 | | 62.1 | 0.976 ± 0.011 | 230.3/117 = 2.0 | 0.000 | | 7000.0 | 1.152 ± 0.006 | 145.8/159 = 0.9 | 0.766 | #### Up to $-t=3 \text{ GeV}^2$ | IZ | | 2 /NDE | CI | |--------|-------------------|---------------------|-------| | Energy | α | χ^2/NDF | CL | | (GeV) | | | | | 23.5 | 1.066 ± 0.014 | 94.2/106 = 0.9 | 0.786 | | 30.5 | 1.131 ± 0.012 | 181.1/145 = 1.2 | 0.023 | | 44.6 | 1.072 ± 0.009 | 525.9/174 = 3.0 | 0.000 | | 52.8 | 0.918 ± 0.018 | 64.9/82 = 0.8 | 0.918 | | 62.1 | 1.040 ± 0.017 | 155.9/95 = 1.6 | 0.000 | | 7000.0 | 1.152 ± 0.006 | 145.8/159 = 0.9 | 0.766 | α is significantly different from 1 at the LHC (7 TeV) # FIT RESULTS – EXPANSION PARAMETERS | R | σ_0 | $c1_{re}$ | $c1_{im}$ | $c2_{re}$ | $c2_{im}$ | |----------------|-------------|-------------------|--------------------|--------------------|--------------------| | | | | | | | | 11.0 ± 0.4 | 24 ± 1 | 1.508 ± 0.024 | 0.677 ± 0.024 | -0.180 ± 0.003 | -0.071 ± 0.003 | | 9.7 ± 0.3 | 75 ± 3 | 0.628 ± 0.027 | -0.458 ± 0.032 | -0.108 ± 0.005 | 0.070 ± 0.003 | | 11.8 ± 0.3 | 92 ± 2 | 0.614 ± 0.017 | -0.409 ± 0.018 | -0.071 ± 0.003 | 0.038 ± 0.002 | | 22.0 ± 0.9 | 86 ± 15 | 0.740 ± 0.112 | -0.321 ± 0.037 | -0.017 ± 0.002 | 0.008 ± 0.001 | | 13.6 ± 0.5 | 109 ± 4 | 0.586 ± 0.023 | 0.351 ± 0.025 | -0.049 ± 0.004 | -0.024 ± 0.002 | | 10.0 ± 0.1 | 452 ± 8 | 0.559 ± 0.008 | 0.030 ± 0.067 | -0.264 ± 0.009 | 0.025 ± 0.024 | -*t*<10GeV² | R | σ_0 | $c1_{re}$ | $c1_{im}$ | $c2_{re}$ | $c2_{im}$ | |----------------|-------------|-------------------|--------------------|--------------------|--------------------| | | | | | | | | 10.0 ± 0.4 | 43 ± 11 | 0.898 ± 0.221 | 0.724 ± 0.084 | -0.140 ± 0.016 | -0.097 ± 0.007 | | 8.4 ± 0.3 | 78 ± 2 | 0.554 ± 0.022 | 0.373 ± 0.041 | -0.142 ± 0.008 | -0.077 ± 0.005 | | 10.1 ± 0.3 | 94 ± 2 | 0.563 ± 0.014 | 0.344 ± 0.024 | -0.095 ± 0.005 | -0.055 ± 0.003 | | 16.7 ± 1.2 | 115 ± 9 | 0.562 ± 0.042 | -0.305 ± 0.036 | -0.026 ± 0.004 | 0.015 ± 0.002 | | 11.1 ± 0.6 | 109 ± 3 | 0.538 ± 0.020 | -0.291 ± 0.038 | -0.076 ± 0.008 | 0.032 ± 0.003 | | 10.0 ± 0.1 | 452 ± 8 | 0.559 ± 0.008 | 0.030 ± 0.067 | -0.264 ± 0.009 | 0.025 ± 0.024 | -*t*<3GeV² # **SUMMARY AND CONCLUSIONS** # Several model-independent methods: - Based on matching an abstract measure in H to the approximate shape of data - Gaussian: Edgeworth expansions - Exponential: Laguerre expansions - Levy (0 < $\alpha \le 2$): Levy expansions - TOTEM: excluded a purely exponential diff. cross-section at low |t| at 8 TeV - Levy expansion: indicate a non-exponential diff. crosssection up to $-t = 3.0 \text{ GeV}^2$ even at 7 TeV - **Deviation** from exponential measured by 1 parameter: α