Model independent analysis method for the differential cross-section of elastic pp scattering

T. Csörgő^{1,2}, T. Novák¹ and A. Ster²

¹ EKU KRC, Gyöngyös, Hungary

² Wigner RCP, Budapest, Hungary

OUTLINE

Model-independent shape analysis:

- General introduction
- Edgeworth, Laguerre
- Levy expansions
- Application in elastic pp scattering

Summary

MODEL - INDEPENDENT SHAPE ANALYIS I.

Model-independent method, proposed to analyze Bose-Einstein correlations IF experimental data satisfy

- The measured data tend to a constant for large values of the observable Q.
- There is a *non-trivial structure* at some definite value of Q, shift it to Q = 0.

Model-independent, but experimentally testable:

- t = Q R
- dimensionless scaling variable
- approximate form of the correlations w(t)
- Identify w(t) with a measure in an abstract Hilbert-space

$$\int dt w(t) h_n(t) h_m(t) = \delta_{n,m},$$

$$f(t) = \sum_{n=0}^{\infty} f_n h_n(t),$$

$$f_n = \int dt w(t) f(t) h_n(t).$$

e.g. $t = Q_I R_I$

MODEL - INDEPENDENT SHAPE ANALYIS II.

$$C_2(\mathbf{k}_1, \mathbf{k}_2) = \frac{N_2(\mathbf{k}_1, \mathbf{k}_2)}{N_1(\mathbf{k}_1) N_1(\mathbf{k}_2)},$$

$$R_2(\mathbf{k}_1, \mathbf{k}_2) = C_2(\mathbf{k}_1, \mathbf{k}_2) - 1.$$

Let us assume, that the function $g(t) = R_2(t)/w(t)$ is also an element of the Hilbert space H. This is possible, if

$$\int dt \, w(t)g^2(t) = \int dt \, \left[R_2^2(t)/w(t) \right] < \infty, \tag{6}$$

Then the function g can be expanded as

$$g(t) = \sum_{n=0}^{\infty} g_n h_n(t),$$
$$g_n = \int dt \, R_2(t) h_n(t).$$

From the completeness of the Hilbert space, if g(t) is also in the Hilbert space:

$$R_2(t) = w(t) \sum_{n=0}^{\infty} g_n h_n(t).$$

T. Csörgő and S: Hegyi, hep-ph/9912220, T. Csörgő, hep-ph/001233

MODEL - INDEPENDENT SHAPE ANALYIS III.

$$C_2(\mathbf{k}_1, \mathbf{k}_2) = \frac{N_2(\mathbf{k}_1, \mathbf{k}_2)}{N_1(\mathbf{k}_1) N_1(\mathbf{k}_2)},$$

$$C_2(t) = \mathcal{N}\left\{1 + \lambda_w w(t) \sum_{n=0}^{\infty} g_n h_n(t)\right\}$$

Model-independent AND experimentally testable:

- method for any approximate shape w(t)
- the core-halo intercept parameter of the CF is
- coefficients by numerical integration (fits to data)
- condition for applicability: experimentally testabe

$$\lambda_* = \lambda_w \sum_{n=0}^{\infty} g_n h_n(0)$$

$$g_n = \int dt \, R_2(t) h_n(t)$$

$$\int dt \left[R_2^2(t)/w(t) \right] < \infty$$

GAUSSIAN w(t): EDGEWORTH EXPANSION

$$t = \sqrt{2}QR_E,$$

$$w(t) = \exp(-t^2/2),$$

$$\int_{-\infty}^{\infty} dt \, \exp(-t^2/2) H_n(t) H_m(t) \propto \delta_{n,m},$$

$$H_n(t) = \exp(t^2/2) \left(-\frac{d}{dt}\right)^n \exp(-t^2/2).$$
 $H_2(t) = t^2 - 1,$ $H_3(t) = t^3 - 3t,$

$$H_1(t) = t,$$

 $H_2(t) = t^2 - 1,$
 $H_3(t) = t^3 - 3t,$
 $H_4(t) = t^4 - 6t^2 + 3, ...$

$$C_2(Q) = \mathcal{N} \left\{ 1 + \lambda_E \exp(-Q^2 R_E^2) \times \left[1 + \frac{\kappa_3}{3!} H_3(\sqrt{2}QR_E) + \frac{\kappa_4}{4!} H_4(\sqrt{2}QR_E) + \dots \right] \right\}.$$

3d generalization straightforward

Applied by NA22, L3, STAR, PHENIX, ALICE, CMS (LHCb)

EXPONENTIAL w(t): LAGUERRE EXPANSIONS

Model-independent but experimentally tested:

- *w*(*t*) exponential
- t. dimensionless
- Laguerre polynomials

$$t = QR_L,$$

$$w(t) = \exp(-t)$$

 $\int dt \, R_2^2(t) \exp(+t) < \infty,$

$$\int_{0}^{\infty} dt \, \exp(-t) L_n(t) L_m(t) \propto \delta_{n,m},$$

$$L_n(t) = \exp(t) \frac{d^n}{dt^n} (-t)^n \exp(-t).$$
 $L_0(t) = 1,$ $L_1(t) = t - 1,$

$$C_2(Q) = \mathcal{N}\left\{1 + \lambda_L \exp(-QR_L) \left[1 + c_1 L_1(QR_L) + \frac{c_2}{2!} L_2(QR_L) + \dots\right]\right\}$$

First successful tests

- NA22, UA1 data
- convergence criteria satisfied
- intercept parameter ~ 1

$$\lambda_* = \lambda_L [1 - c_1 + c_2 - \dots],$$

$$\delta^2 \lambda_* = \delta^2 \lambda_L \left[1 + c_1^2 + c_2^2 + \dots \right] + \lambda_L^2 \left[\delta^2 c_1 + \delta^2 c_2 + \dots \right]$$

STRETCHED w(t): LEVY EXPANSIONS

$$w(t|\alpha) = \exp(-t^{\alpha}) = \exp(-Q^{\alpha}R^{\alpha})$$

Model-independent but:

- Levy: stretched exponential
- generalizes exponentials and Gaussians
- ubiquoutous in nature
- How far from a Levy?
- Need new set of polynomials orthonormal to a Levy weight

$$L_1(x \mid \alpha) = \det \begin{pmatrix} \mu_{0,\alpha} & \mu_{1,\alpha} \\ 1 & x \end{pmatrix}$$

$$L_2(x \mid \alpha) = \det \begin{pmatrix} \mu_{0,\alpha} & \mu_{1,\alpha} & \mu_{2,\alpha} \\ \mu_{1,\alpha} & \mu_{2,\alpha} & \mu_{3,\alpha} \\ 1 & x & x^2 \end{pmatrix}$$

$$\mu_{r,\alpha} = \int_0^\infty dx \ x^r f(x \mid \alpha) = \frac{1}{\alpha} \Gamma(\frac{r+1}{\alpha})$$

STRETCHED w(t): LEVY EXPANSIONS

In case of $\alpha = 1$, in 1 dimension Laguerre expansion is recovered

$$L_0(t \mid \alpha = 1) = 1,$$

 $L_1(t \mid \alpha = 1) = t - 1,$
 $L_2(t \mid \alpha = 1) = t^2 - 4t + 2.$

These reduce to the Laguerre expansions and Laguerre polynomials.

STRETCHED w(t)= $\exp(-t^{\alpha})$: LEVY EXPANSIONS

In case of $\alpha = 2$, a new formulae for one-sided Gaussians:

$$L_{0}(t \mid \alpha = 2) = \frac{\sqrt{\pi}}{2},$$

$$L_{1}(t \mid \alpha = 2) = \frac{1}{2} \{ \sqrt{\pi}t - 1 \},$$

$$L_{2}(t \mid \alpha = 2) = \frac{1}{32} \{ (\pi - 2)t^{2} - \sqrt{\pi}t + 2 - \frac{\pi}{2} \}.$$

Provides a new expansion around a Gaussian shape that is defined for the non-negative values of *t* only.

Edgeworth expansion different, its around two-sided Gaussian, includes non-negative values of *t* also.

EXAMPLE, LAGUERRE EXPANSIONS

T. Csörgő and S: Hegyi, hep-ph/9912220, T. Csörgő, hep-ph/001233

EXAMPLE, LEVY EXPANSIONS

Model-independent but:

- Levy generalizes exponentials and Gaussians
- ubiquoutous in nature
- How far from a Levy?
- Not necessarily positive definit!

$$L_1(x \mid \alpha) = \det \begin{pmatrix} \mu_{0,\alpha} & \mu_{1,\alpha} \\ 1 & x \end{pmatrix}$$

$$L_2(x \mid \alpha) = \det \begin{pmatrix} \mu_{0,\alpha} & \mu_{1,\alpha} & \mu_{2,\alpha} \\ \mu_{1,\alpha} & \mu_{2,\alpha} & \mu_{3,\alpha} \\ 1 & x & x^2 \end{pmatrix}$$

$$\mu_{r,\alpha} = \int_0^\infty dx \ x^r f(x \mid \alpha) = \frac{1}{\alpha} \Gamma(\frac{r+1}{\alpha})$$

Lévy polynomials of first and third order times the weight function $e^{-x^{\alpha}}$ for $\alpha = 0.8, 1.0, 1.2, 1.4$.

1st-order Lévy polynomial
$$\gamma \left[1 + \lambda e^{-R^{\alpha}Q^{\alpha}} [1 + c_1 L_1(Q|\alpha, R)] \right]$$

3rd-order Lévy polynomial $\gamma \left[1 + \lambda e^{-R^{\alpha}Q^{\alpha}} [1 + c_1 L_1(Q|\alpha, R) + c_3 L_3(Q|\alpha, R)] \right]$

M. de Kock, H. C. Eggers, T. Cs: arXiv:1206.1680v1 [nucl-th]

LEVY EXPANSIONS for POSITIVE DEFINIT FORMS

experimental conditions:

- (i) The correlation function tends to a constant for large values of the relative momentum Q.
- (ii) The correlation function deviates from its asymptotic, large Q value in a certain domain of its argument.
- (iii) The two-particle correlation function is related to a Fourier transformed space-time distribution of the source.

Model-independent but:

- Assumes that Coulomb can be corrected
- No assumptions about analyticity yet
- For simplicity, consider 1d case first
- For simplicity, consider factorizable x k
- Normalizations :
 - density
 - multiplicity
 - single-particle spectra

$$C_2(\mathbf{k}_1, \mathbf{k}_2) = \frac{N_2(\mathbf{k}_1, \mathbf{k}_2)}{N_1(\mathbf{k}_1) N_1(\mathbf{k}_2)}$$

$$S(x,k) = f(x) g(k)$$

$$\int dx f(x) = 1, \qquad \int dk g(k) = \langle n \rangle,$$

$$N_1(k) = \int \mathrm{d}x \, S(x,k) = g(k).$$

T. Cs, S. Hegyi, W.A. Zajc, EPJ C36, 67 (2004)

MINIMAL MODEL ASSUMPTION: LEVY

Model-independent but:

- not assumes analyticity
- C₂ measures a modulus squared Fouriertransform vs relative momentum

$$C_2(k_1, k_2) = 1 + |\tilde{f}(q_{12})|^2,$$

- Correlations non-Gaussian
- Radius not a variance

•
$$0 < \alpha \le 2$$

$$\tilde{f}(q_{12}) = \int \mathrm{d}x \, \exp(\mathrm{i}q_{12}x) \, f(x),$$

$$C(q; \alpha) = 1 + \lambda \exp(-|qR|^{\alpha}).$$

UNIVARIATE LEVY EXAMPLES

Include some well known cases:

- $\alpha = 2$
 - Gaussian source, Gaussian C₂

$$f(x) = \frac{1}{(2\pi R^2)^{1/2}} \exp\left[-\frac{(x - x_0)^2}{2R^2}\right]$$
$$C(q) = 1 + \exp\left(-q^2 R^2\right)$$

- \bullet $\alpha = 1$
 - Lorentzian source, exponential C₂

$$f(x) = \frac{1}{\pi} \frac{R}{R^2 + (x - x_0)^2},$$

$$C(q) = 1 + \exp(-|qR|).$$

- asymmetric Levy:
 - asymmetric support
 - Streched exponential

$$f(x) = \sqrt{\frac{R}{8\pi}} \frac{1}{(x - x_0)^{3/2}} \exp\left(-\frac{R}{8(x - x_0)}\right)$$
$$x_0 < x < \infty,$$
$$C(q) = 1 + \exp\left(-\sqrt{|qR|}\right).$$

T. Cs, hep-ph/0001233, T. Cs, S. Hegyi, W.A. Zajc, EPJ C36, 67 (2004)

Non-Exponential Differential Cross-Section

To study the detailed behaviour of the differential cross-section, a series of fits has been made using the parametrisation:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}t}(t) = \left. \frac{\mathrm{d}\sigma}{\mathrm{d}t} \right|_{t=0} \exp\left(\sum_{i=1}^{N_b} b_i t^i \right),\tag{15}$$

which includes the pure exponential $(N_b = 1)$ and its straight-forward extensions $(N_b = 2, 3)$.

Nuclear Physics B 899 (2015) 527-546

However, this method does not extrapolate well

LEVY EXPANSION FIT TO NON-EXPONENTIALS

$$z=\sqrt{|t|}\,R$$

$$\frac{d\sigma}{dt} = \frac{d\sigma}{dt}\Big|_{t=0} \exp(-z^{\alpha}) |1 + c_1 L_1(z|\alpha) + c_2 L_2(z|\alpha) + \dots|^2$$

Levy expansion method works in a large t interval

FIT RESULTS - LEVY EXPONENTS

Fit range:

Up to $-t=10 \text{ GeV}^2$

Energy	α	$\chi^2/{\rm NDF}$	CL
(GeV)			
23.5	1.036 ± 0.011	159.9/127 = 1.3	0.026
30.5	1.077 ± 0.009	307.9/166 = 1.9	0.000
44.6	1.017 ± 0.007	744.6/198 = 3.8	0.000
52.8	0.856 ± 0.008	112.1/111 = 1.0	0.453
62.1	0.976 ± 0.011	230.3/117 = 2.0	0.000
7000.0	1.152 ± 0.006	145.8/159 = 0.9	0.766

Up to $-t=3 \text{ GeV}^2$

IZ		2 /NDE	CI
Energy	α	χ^2/NDF	CL
(GeV)			
23.5	1.066 ± 0.014	94.2/106 = 0.9	0.786
30.5	1.131 ± 0.012	181.1/145 = 1.2	0.023
44.6	1.072 ± 0.009	525.9/174 = 3.0	0.000
52.8	0.918 ± 0.018	64.9/82 = 0.8	0.918
62.1	1.040 ± 0.017	155.9/95 = 1.6	0.000
7000.0	1.152 ± 0.006	145.8/159 = 0.9	0.766

α is significantly different from 1 at the LHC (7 TeV)

FIT RESULTS – EXPANSION PARAMETERS

R	σ_0	$c1_{re}$	$c1_{im}$	$c2_{re}$	$c2_{im}$
11.0 ± 0.4	24 ± 1	1.508 ± 0.024	0.677 ± 0.024	-0.180 ± 0.003	-0.071 ± 0.003
9.7 ± 0.3	75 ± 3	0.628 ± 0.027	-0.458 ± 0.032	-0.108 ± 0.005	0.070 ± 0.003
11.8 ± 0.3	92 ± 2	0.614 ± 0.017	-0.409 ± 0.018	-0.071 ± 0.003	0.038 ± 0.002
22.0 ± 0.9	86 ± 15	0.740 ± 0.112	-0.321 ± 0.037	-0.017 ± 0.002	0.008 ± 0.001
13.6 ± 0.5	109 ± 4	0.586 ± 0.023	0.351 ± 0.025	-0.049 ± 0.004	-0.024 ± 0.002
10.0 ± 0.1	452 ± 8	0.559 ± 0.008	0.030 ± 0.067	-0.264 ± 0.009	0.025 ± 0.024

-*t*<10GeV²

R	σ_0	$c1_{re}$	$c1_{im}$	$c2_{re}$	$c2_{im}$
10.0 ± 0.4	43 ± 11	0.898 ± 0.221	0.724 ± 0.084	-0.140 ± 0.016	-0.097 ± 0.007
8.4 ± 0.3	78 ± 2	0.554 ± 0.022	0.373 ± 0.041	-0.142 ± 0.008	-0.077 ± 0.005
10.1 ± 0.3	94 ± 2	0.563 ± 0.014	0.344 ± 0.024	-0.095 ± 0.005	-0.055 ± 0.003
16.7 ± 1.2	115 ± 9	0.562 ± 0.042	-0.305 ± 0.036	-0.026 ± 0.004	0.015 ± 0.002
11.1 ± 0.6	109 ± 3	0.538 ± 0.020	-0.291 ± 0.038	-0.076 ± 0.008	0.032 ± 0.003
10.0 ± 0.1	452 ± 8	0.559 ± 0.008	0.030 ± 0.067	-0.264 ± 0.009	0.025 ± 0.024

-*t*<3GeV²

SUMMARY AND CONCLUSIONS

Several model-independent methods:

- Based on matching an abstract measure in H to the approximate shape of data
- Gaussian: Edgeworth expansions
- Exponential: Laguerre expansions
- Levy (0 < $\alpha \le 2$): Levy expansions
- TOTEM: excluded a purely exponential diff. cross-section at low |t| at 8 TeV
- Levy expansion: indicate a non-exponential diff. crosssection up to $-t = 3.0 \text{ GeV}^2$ even at 7 TeV
- **Deviation** from exponential measured by 1 parameter: α