Single diffraction in the dipole picture: an outlook

Roman Pasechnik Lund U.

ECT*, Trento, Italy

Diffractive factorisation breaking in pp collisions

Incoming hadrons are not elementary — experience soft interactions dissolving them leaving much fewer rapidity gap events than in ep scattering

Sources of diffractive factorisation breaking:

- ✓ soft survival (=absorptive) effects (Khoze-Martin-Ryskin and Gotsman-Levin-Maor) affecting e.g. the Pomeron flux (Goulianos)
- ✓ interplay of hard and soft fluctuations in incoming hadron wave function
- ✓ saturated shape of the universal dipole cross section for large dipole sizes

Two distinct approaches treating the above effects:

- Regge-corrected (KMR) approach the first source of the factorisation breaking is accounted at the cross section level by "dressing" the factorisation formula by soft Pomeron exchanges
- Color dipole approach the universal way of inclusive/diffractive scattering treatment, accounts for all the sources of Regge factorisation breaking at the amplitude level (Kopeliovich, RP et al)

Good-Walker picture of diffractive scattering

R. J. Glauber, Phys. Rev. 100, 242 (1955).
E. Feinberg and I. Ya. Pomeranchuk, Nuovo. Cimento. Suppl. 3 (1956) 652.
M. L. Good and W. D. Walker, Phys. Rev. 120 (1960) 1857.

Projectile has a substructure!

Hadron can be excited: not an eigenstate of interaction!

$$\left|h\right\rangle = \sum_{\alpha=1} C^{h}_{\alpha} \left|\alpha\right\rangle$$

$$\hat{f}_{el}|\alpha\rangle = f_{\alpha}|\alpha\rangle$$

Completeness and orthogonality

$$\langle h'|h\rangle = \sum_{\alpha=1}^{\infty} (C_{\alpha}^{h'})^* C_{\alpha}^h = \delta_{hh'}$$

$$\langle \beta|\alpha\rangle = \sum_{h'} (C_{\beta}^{h'})^* C_{\alpha}^{h'} = \delta_{\alpha\beta}$$

Elastic and single diffractive amplitudes

$$f_{el}^{h \to h} = \sum_{\alpha=1}^{h \to h} |C_{\alpha}^{h}|^{2} f_{\alpha}$$
$$f_{sd}^{h \to h'} = \sum_{\alpha=1}^{h \to h'} (C_{\alpha}^{h'})^{*} C_{\alpha}^{h} f_{\alpha}$$

Single diffractive cross section

Important basis for the dipole picture!

fluctuations				semi-hard/ semi-soft	soft
		$ C_{\alpha} ^2$	σα	$\sigma_{tot} = \sum_{\alpha = soft}^{hard} C_{\alpha} ^2 \sigma_{\alpha}$	$\sigma_{sd} = \sum_{\alpha = soft}^{hard} C_{\alpha} ^2 \sigma_{\alpha}^2$
	Hard	~ 1	$\sim rac{1}{Q^2}$	$\sim rac{1}{Q^2}$	$\sim rac{1}{Q^4}$
	Soft	$\sim rac{m_q^2}{Q^2}$	$\sim rac{1}{m_q^2}$	$\sim rac{1}{Q^2}$	$\sim \frac{1}{m_q^2 Q^2}$

 $\sum_{h' \neq h} \frac{d\sigma_{sd}^{h \to h'}}{dt} \bigg|_{t=0} = \frac{1}{4\pi} \left[\sum_{h'} |f_{sd}^{hh'}|^2 - |f_{el}^{hh}|^2 \right]$ $= \frac{1}{4\pi} \left[\sum_{\alpha} |C_{\alpha}^{h}|^2 |f_{\alpha}|^2 - \left(\sum_{\alpha} |C_{\alpha}^{h}| f_{\alpha} \right)^2 \right] = \underbrace{\left[\frac{\langle f_{\alpha}^2 \rangle - \langle f_{\alpha} \rangle^2}{4\pi} \right]}_{\text{bicture!}}$

Phenomenological dipole approach

Eigenvalue of the total cross section is the universal dipole cross section

Dipole:

- cannot be excited
- experience only elastic scattering
- have no definite mass, but only separation
- universal elastic amplitude can be extracted in one process and used in another

see e.g. B. Kopeliovich et al, since 1981

Eigenstates of interaction in QCD: color dipoles

$$\sum_{h'} \frac{d\sigma_{sd}^{h \to h'}}{dt} \bigg|_{t=0} = \sum_{\alpha=1} |C_{\alpha}^{h}|^{2} \frac{\sigma_{\alpha}^{2}}{16\pi} =$$
SD cross section
$$\int d^{2}r_{T} (\Psi_{h}(r_{T}))^{2} \frac{\sigma^{2}(r_{T})}{16\pi} = \frac{\langle \sigma^{2}(r_{T}) \rangle}{16\pi}$$

wave function of a given Fock state

total DIS cross section

$$\sigma_{tot}^{\gamma^* p}(Q^2, x_{Bj}) = \int d^2 r_T \int_0^1 dx \left| \Psi_{\gamma^*}(r_T, Q^2) \right|^2 \sigma_{\bar{q}q}(r_T, x_{Bj})$$

Theoretical calculation of the dipole CS is a challenge

BUT! Can be extracted from data and used in ANY process!

Example: Naive GBW parameterization of HERA data

partonic interpretation of

a scattering does depend on

frame of reference!

color transparency

QCD factorisation

 $\sigma_{\bar{q}q}(r_T,x) = \sigma_0 \left[1 - e^{-\frac{1}{4}r_T^2 \mathcal{Q}_s^2(x)}\right]$

saturates at large separations

$$r_T^2 \gg 1/Q_s^2$$

$$egin{aligned} \sigma_{ar{q}q}(r_T) &\propto r_T^2 & r_T &
ightarrow 0 \ \sigma_{qar{q}}(r,x) &\propto r^2 x g(x) \end{aligned}$$

A point-like colorless object does not interact with external color field!

ANY inclusive/diffractive scattering is due to an interference of dipole scatterings!

Gluon distribution amplitudes and dipole CS

In most cases, a scattering cross section in the target rest frame can be represented in terms of three basic ingredients:

Gluon to quark-antiquark splitting amplitude:

$$\begin{split} \Phi_{Q\bar{Q}}^{T} &= \sqrt{\alpha_{s}} \int \frac{d^{2}\kappa}{(2\pi)^{2}} \left(\xi_{Q}^{\mu}\right)^{\dagger} \frac{m_{Q}(\vec{e}_{ini}\cdot\vec{\sigma}) + (1-2\beta)(\vec{\sigma}\cdot\vec{n})(\vec{e}_{ini}\cdot\vec{\kappa}) + i(\vec{e}_{ini}\times\vec{n})\cdot\vec{\kappa}}{\kappa^{2} + \epsilon^{2}} \tilde{\xi}_{\bar{Q}}^{\bar{\mu}} e^{-i\vec{\kappa}\vec{r}} \\ &= \frac{\sqrt{\alpha_{s}}}{2\pi} \left(\xi_{Q}^{\mu}\right)^{\dagger} \left\{ m_{Q}(\vec{e}_{ini}\cdot\vec{\sigma}) + i(1-2\beta)(\vec{\sigma}\cdot\vec{n})(\vec{e}_{ini}\cdot\vec{\nabla}_{r}) - (\vec{e}_{ini}\times\vec{n})\cdot\vec{\nabla}_{r} \right\} \tilde{\xi}_{\bar{Q}}^{\bar{\mu}} K_{0}(\epsilon r) \,, \end{split}$$

Gluon Bremsstrahlung off a quark:

$$\Phi_{qG^*}^T(\alpha,\vec{\pi}) = \sqrt{\alpha_s} \left(\eta_Q^s\right)^{\dagger} \frac{(2-\alpha)(\vec{e_*}\cdot\vec{\pi}) + im_q \alpha^2(\vec{n}\times\vec{e_*})\cdot\vec{\sigma} - i\alpha(\vec{\pi}\times\vec{e_*})\cdot\vec{\sigma}}{\vec{\pi}^2 + \alpha^2 m_q^2} \eta_Q^{s'}$$

Universal dipole cross section:

Dipole approach vs NLO QCD: Drell-Yan

Diffractive Abelian (e.g. Drell-Yan) radiation via dipoles

interplay between hard and soft fluctuations is pronounced!

SD DY/gauge bosons

superposition has a **Good-Walker structure**

$$\propto \sigma(\vec{R}) - \sigma(\vec{R} - \alpha \vec{r}) = \frac{2\alpha \sigma_0}{R_0^2(x_2)} e^{-R^2/R_0^2(x_2)} \left(\vec{r} \cdot \vec{R}\right) + O(r^2)$$

Diffractive DIS $\,\propto r^4 \propto 1/M^4\,$ vs diffractive DY $\,\propto\,r^2 \propto 1/M^2\,$

SD heavy quarks

 $r \sim 1/(1-\alpha)M$

- ★ diffractive factorisation is automatically broken
- ★ any SD reaction is a superposition of dipole amplitudes
- ★ gap survival is automatically included at the amplitude level on the same footing as dip. CS
- ★ works for a variety of data in terms of universal dip. CS

Sophisticated dipole cascades are being put into MC: Lund Dipole Chain model (DIPSY) Ref. G. Gustafson, and L. Lönnblad

Elastic amplitude and gap survival

Dipole elastic amplitude has **eikonal form**:

$$\operatorname{Im} f_{el}(\vec{b}, \vec{r}_1 - \vec{r}_2) = 1 - \exp\left[i\chi(\vec{r}_1) - i\chi(\vec{r}_2)\right]$$
$$\sigma_{\bar{q}q}(r_p, x) = \int d^2b \, 2 \operatorname{Im} f_{el}(\vec{b}, \vec{r}_p) = \sigma_0(1 - e^{-r_p^2/R_0^2(x)})$$
$$\chi(b) = -\int_{-\infty}^{\infty} dz \, V(\vec{b}, z) \qquad \qquad \underbrace{potential \text{ is nearly imaginary}}_{at \text{ high energies!}}$$

Diffractive amplitude is proportional to

$$\operatorname{Im} f_{el}(\vec{b}, \vec{r_1} - \vec{r_2} + \alpha \vec{r}) - \operatorname{Im} f_{el}(\vec{b}, \vec{r_1} - \vec{r_2}) = \exp\left[i\chi(\vec{r_1}) - i\chi(\vec{r_2})\right] \exp\left[i\alpha \vec{r} \cdot \vec{\nabla}\chi(\vec{r_1})\right]$$
$$|\vec{r_i} - \vec{r_j}| \sim b \sim R_p, \ i \neq j$$

Exactly the soft survival probability amplitude

another source of QCD factorisation breaking

controlled by soft spectator partons vanishes in the black disc limit!

Absorption effect is automatically included into elastic amplitude at the amplitude level

SD-to-inclusive ratio for diffractive gauge bosons production

RP et al 2011,12
$$\operatorname{Im} f_{el}(\vec{b}, \vec{R}_{ij} + \alpha \vec{r}) - \operatorname{Im} f_{el}(\vec{b}, \vec{R}_{ij}) \simeq \frac{\partial \operatorname{Im} f_{el}(\vec{b}, \vec{R}_{ij})}{\partial \vec{R}_{ij}} \alpha \vec{r}$$

$$\begin{split} |\Psi_{i}(\vec{r_{1}},\vec{r_{2}},\vec{r_{3}};x_{q},\{x_{q}^{2,3,\dots}\},\{x_{g}^{2,3,\dots})|^{2} &= \frac{3a^{2}}{\pi^{2}}e^{-a(r_{1}^{2}+r_{2}^{2}+r_{3}^{2})}\rho(x_{q},\{x_{q}^{2,3,\dots}\},\{x_{g}^{2,3,\dots}\}) \\ & \times \delta(\vec{r_{1}}+\vec{r_{2}}+\vec{r_{3}})\delta(1-x_{q}-\sum_{j}x_{q/g}^{j}), \\ & a &= \langle r_{ch}^{2} \rangle^{-1} \\ \int d^{2}r_{1}d^{2}r_{2}d^{2}r_{3} e^{-a(r_{1}^{2}+r_{2}^{2}+r_{3}^{2})}\delta(\vec{r_{1}}+\vec{r_{2}}+\vec{r_{3}}) &= \frac{1}{9}\int d^{2}R_{12}d^{2}R_{13}e^{-\frac{2a}{3}(R_{12}^{2}+R_{13}^{2}+\vec{R_{12}}\vec{R_{13}})} \end{split}$$

$$\frac{d\sigma_{\lambda_G}^{sd}/d^2 q_\perp dx_1 dM^2}{d\sigma_{\lambda_G}^{incl}/d^2 q_\perp dx_1 dM^2} = \frac{a^2}{6\pi} \frac{\bar{R}_0^2 (M_\perp^2/x_1 s)}{B_{sd}(s) \bar{\sigma}_0} \frac{\sigma_0^2(s)}{R_0^4(s)} \frac{1}{A_2} \Big[\frac{2}{(A_2 - 4A_1)^2} + \frac{A_2^2}{(A_2^2 - 4A_3^2)^2} \Big]$$

$$A_1 = \frac{2a}{3} + \frac{2}{R_0^2(s)}, \qquad A_2 = \frac{2a}{3}, \qquad A_3 = \frac{2a}{3} + \frac{1}{R_0^2(s)}$$

Soft KST (large dipoles)

$$R_{0}(s) = 0.88 \text{ fm} (s_{0}/s)^{0.14}$$

$$\sigma_{0}(s) = \sigma_{tot}^{\pi p}(s) \left(1 + \frac{3R_{0}^{2}(s)}{8\langle r_{ch}^{2}\rangle_{\pi}}\right)$$

$$\sigma_{tot}^{\pi p}(s) = 23.6(s/s_{0})^{0.08} \text{ mb}$$

$$\langle r_{ch}^{2}\rangle_{\pi} = 0.44 \text{ fm}^{2}$$

Hard GBW (small dipoles)

$$\bar{\sigma}_0 = 23.03 \,\mathrm{mb}\,, \quad \bar{R}_0(x_2) = 0.4 \,\mathrm{fm} \times (x_2/x_0)^{0.144}\,, \quad x_0 = 3.04 \times 10^{-4}$$

diffractive (Regge) slope $B_{sd}(s) \simeq \langle r_{ch}^2 \rangle / 3 + 2\alpha'_{I\!P} \ln(s/s_0)$

At the leading twist, the dipole approach predicts the same angular correlation in DDY as in inclusive DY!

Diffractive factorisation breaking in DDY

PT correlations in inclusive and diffractive Drell-Yan

Angular correlations in Drell-Yan as a probe for saturation

This picture does not change when turning to diffractive Drell-Yan

Heavy flavour production: Bremsstrahlung vs Fusion

Gauge-invariant sub-sets of diagrams

B. Kopeliovich et al, PRD76 2007

<u>Gluon virtuality</u>

$$(p_2 - p_1)^2 \equiv -Q^2, \qquad Q^2 = \frac{\vec{\pi}^2 + \alpha^2 m_q^2}{\bar{\alpha}} \qquad \vec{\pi} = \alpha \vec{p}_2 - \bar{\alpha} \vec{k}, \qquad \vec{k} = \sum_i \vec{k}_i$$

Basis for heavy flavour production in the dipole picture

Dipole framework for heavy flavor production

Inclusive Q-jet pT distribution in pp collisions vs LHC data

Diffractive non-Abelian (gluon) radiation via dipoles

when the LO contributions get generalised to all-order results, ALL possible higher-order (perturbative+nonperturbative) corrections due to NON-RESOLVED emissions are AUTOMATICALLY resumed and accounted for by the dipole formula!

$$SD \text{ amplitude} \qquad \overline{|A_{SD}|^2} \simeq \frac{3}{256} |\Psi_{in}|^2 |\Psi_{fin}|^2 \sum_{i,j=1}^2 \left[\nabla^i \Psi_{Q\bar{Q}}^*(\alpha,\vec{r}) \nabla^j \Psi_{Q\bar{Q}}(\alpha,\vec{r}') \right] \Omega_{\text{soft}}^{ij}$$

"soft color screening" part
$$\Omega_{\text{soft}}^{ij} = \left[\nabla^i \sigma_{q\bar{q}}(\vec{r}_{12}) + \nabla^i \sigma_{q\bar{q}}(\vec{r}_{13}) \right] \left[\nabla^j \sigma_{q\bar{q}}(\vec{r}_{12}) + \nabla^j \sigma_{q\bar{q}}(\vec{r}_{13}) \right]$$

$$\frac{SD \text{-to-inclusive ratio}}{d\Omega} \simeq \left(\frac{\overline{R}_0^2(x_2)}{\overline{\sigma}_0} \left[\alpha^2 + \overline{\alpha}^2 - \frac{1}{4} \alpha \overline{\alpha} \right]^{-1} F_{\text{S}}(x_1, s) \frac{d\sigma_{\text{incl}}}{d\Omega} \qquad F_{\text{S}}(x_1, s) \equiv \frac{729 \, a^2 \sigma_0(x_1 s)^2 \Lambda(x_1 s)}{4096 \, \pi^2 \, B_{\text{SD}}(s)} \right]$$

$$\text{The angular correlation is affected by color-screening interaction}$$

in higher-twist diffraction (e.g. in DIS, see talk by A. Rezaeian) but not in the leading twist!

Heavy QQbar angular correlation

 $\frac{d^{3}\sigma(G \rightarrow Q\bar{Q} + X)}{d(\ln \alpha)d^{2}p_{T}} = \frac{1}{6\pi} \int \frac{d^{2}\kappa_{\perp}}{\kappa_{\perp}^{4}} \alpha_{s}^{2} \mathcal{F}(x,\kappa_{\perp}^{2}) \times$ $\left\{ \left[\frac{9}{8} \mathcal{H}_{0}(\alpha,\bar{\alpha},p_{T}) - \frac{9}{4} \mathcal{H}_{1}(\alpha,\bar{\alpha},p_{T},\kappa) + \mathcal{H}_{2}(\alpha,\bar{\alpha},p_{T},\kappa) + \frac{1}{8} \mathcal{H}_{3}(\alpha,\bar{\alpha},p_{T},\kappa) \right] + [\alpha \longleftrightarrow \bar{\alpha}] \right\}$

The same for inclusive and leading-twist single-diffractive QQbar production!

Diffractive Higgsstrahlung off heavy quarks

Gluon-Gluon fusion strongly dominates over gluon Bremsstrahlung!

Diffractive Higgsstrahlung off heavy quarks

Conclusions

- ✓ The dipole picture provides universal and robust means for studies the inclusive and single-diffractive processes in both pp and pA collisions at large Feynman xF beyond QCD factorisation
- ✓ Major sources of diffractive factorisation breaking in hadron-hadron collisions are (i) the absorptive corrections, and (ii) the hard-soft interplay due to transverse motion of spectators, making the hadronic diffraction of the leading-twist nature
- The universal partial dipole amplitude accounts for the absorptive corrections such that no additional probabilistic fudge factors are necessary in the dipole picture
- ✓ Single-diffractive gauge bosons' (e.g. Drell-Yan) and heavy flavour production at large Feynman xF has been studied beyond diffractive factorisation
- The SD-to-diffractive ratio affects the scale and rapidity dependence of the leading-twist hadronic diffractive observables compared to the inclusive ones, the angular correlations are the same as in the inclusive case.