Exclusive Production at the LHC

Maciej Trzebiński

Institute of Nuclear Physics Polish Academy of Sciences

QCD at LHC: forward physics and UPC collisions of heavy ions

28th September 2016

Exclusivity Criterion

All particles produced within detector acceptance.

Forward Detectors

Intact protons – natural diffractive signature.

ALFA

- 240 m from ATLAS IP
- elastic scattering
- special runs (high β^* optics)
- position detectors
- vertically inserted Roman Pots
- soft events, pile-up background

AFP

- 210 m from ATLAS IP
- hard diffraction
- nominal runs (collision optics)
- position and timing detectors
- horizontally inserted RP
- proton detector for hard events

ATLAS was taken as an example, but the conclusions are similar for CMS/TOTEM

proton transverse momentum p_ [GeV/c]

0.05

Exclusive Pion Production

Exclusive Pion Production with Forward Proton Tagging
R. Staszewski, P. Lebiedowicz, M. Trzebinski, J. Chwastowski,
A. Szczurek, Acta Physica Polonica B **42** (2011) 1861

Soft Diffractive Production

Exclusive $\pi^+\pi^-$ Production

- both outcoming protons tagged in ALFA,
- pions measured in ATLAS detector.

soft process \rightarrow relatively large cross-section: $\sigma(\mathbf{pp} \rightarrow \mathbf{p}\pi^+\pi^-\mathbf{p}) \approx \mathbf{230} \ \mu\mathbf{b}$

Forward Protons

Cross section visible in the ALFA detectors (both protons tagged) as a function of the distance between the detectors and the beam centre.

Majority of outgoing protons are in ALFA acceptance region!

Central Pions

Total cross section as a function of pion pseudorapidity.

Distribution peaked around $|\eta| \sim$ 6.

Large correlation between pions pseudorapidity.

Measurements possible in:

- tracker,
- FCAL.

Possible Measurement

Possible measurement of the $\pi^+\pi^-$ invariant mass distribution for $L=100~\mu b^{-1}$ (luminosity: $10^{27}~cm^{-2}s^{-1}$, data collecting time: 30 h.).

Conclusions

- Measurement of Exclusive $\pi^+\pi^-$ is possible using ALFA data.
- Motivated joint ALFA-ATLAS data taking.
- It requires ALFA trigger and low-p_T tracking.
- Measurements at LHC are on the way. So far the only measurements were performed at:
 - $\sqrt{s} = 62$ GeV and $\sqrt{s} = 63$ GeV by the ABCDHW Collaboration,
 - $\sqrt{s} = 200 \text{ GeV STAR}$,
 - $\sqrt{s} = 1.96$ TeV Tevatron.
- GenEx exclusive meson generator see talk by Paula.

Exclusive Jets

Tevatron – Analysis of the DPE Jet Production

 $\label{eq:DPE-Double-Pomeron} \begin{aligned} & \mathsf{DPE-Double\ Pomeron\ Exchange} \\ & \mathsf{Signature:\ two\ jets\ in\ central\ region} \ + \ \mathsf{two\ intact\ protons.} \end{aligned}$

Goal: to probe the Pomeron Density Function.

Too much events in the high mass ratio (M_{jj}) region. Mass ratio is defined as the ratio of mass of the dijet system to missing mass.

Exclusive Jet Production at the Tevatron

Signature: two jets in central region + two intact protons + gap in rapidity between jet and proton (no remnants).

KMR model explains additional contribution in high mass ratio region. In such process there are no Pomeron remnants (in theory ratio = 1, smearing due to the detector effects).

Mass Acceptance

Background

Pile-up – multiple collisions during one bunch crossing (mostly min-bias).

Double Tagged Events

Exclusive Jet Production with Forward Proton Tagging
ATL-PHYS-PUB-2015-003

Cuts – AFP Acceptance

Fraction of pile-up events in AFP (double tagged events) as a function of the average number of interactions with a timing resolution of 20, 10 ps, and for a diffractive mass greater than 800 GeV. Exclusive jet studies for pile-up $\mu=23$ end $\mu=46$.

Cuts - Rapidity Difference

Left: Difference, $y_{jj}-y_X$, of the rapidity of the jet system (y_{jj}) and the rapidity of the proton system $y_X=0.5\cdot\ln\left(\frac{\xi_1}{\xi_2}\right)$, where ξ_1 and ξ_2 are relative energy losses of the tagged in the AFP C and A stations.

Right: The ratio of the jet system mass to the missing mass $M_X = \sqrt{s \cdot \xi_1 \cdot \xi_2}$.

Cuts - Tracks Outside Jets

The number of tracks (fitted to the primary vertex) outside the jet system in η (region 1, top) and the number of tracks perpendicular to the leading jet in ϕ (region 2, bottom) for the signal and background events at pile-up $\mu=23$.

The dashed line represents the value of the applied cut.

Discriminating Power

The number of events accepted after a particular cut for signal and background processes for the integrated luminosity of 40 fb $^{-1}$ at pile-up $\mu=23$ as a function of the applied consecutive cuts.

Number of Events ($\mu = 23$)

Left: The number of accepted events as a function of the leading jet pT threshold for the integrated luminosity L = 40 fb⁻¹ and average number of interactions of $\mu=23$. Right: the number of signal events, marked as yellow bar, with statistical ($\sigma stat$), systematic (σsys) and background ($\sigma bkgd$) uncertainties. The \oplus sign means that given errors are added in quadrature.

Number of Events ($\mu = 46$)

Left: The number of accepted events as a function of the leading jet pT threshold for the integrated luminosity L = 300 fb $^{-1}$ and average number of interactions of $\mu=46$. Right: the number of signal events, marked as yellow bar, with statistical ($\sigma stat$), systematic (σsys) and background ($\sigma bkgd$) uncertainties. The \oplus sign means that given errors are added in quadrature.

Single Tagged Events

On the Possibility of Measuring the Single-tagged Exclusive Jets at the LHC

Eur. Phys. J. C 75 (2015) 320, arXiv:1503.00699

Motivation

Non-diffractive Backgrounds

$\begin{array}{c} {\sf Non\text{-}diffractive\ jets}\\ +\ {\sf pile\text{-}up} \end{array}$

Cuts:

- proton in AFP/ALFA,
- one reconstructed vertex.

Soft single tag probability

Relative Energy Loss Difference

$$\xi^{jet} = \exp(\pm y_{jj}) \frac{M_{jj}}{\sqrt{s}}$$

Veto on Additional Activity

- number of tracks outside jet system (in η): $n_{trk} < 4$,
- number of tracks perpendicular to the leading jet (in ϕ): $n_{phi} < 6$,
- number of particles with energy greater than 4 GeV, $n_{cells} < 2$.

Veto on Additional Activity

- Top: cutflow.
- Bottom: statistical significance $(\frac{S}{\sqrt{S+B}})$ for 100 hours.

Double Tagged Events

Exclusive Jet Measurement in Special LHC Runs – Feasibility Studies Acta Phys. Pol. B **47** (2016) 1745, arXiv:1604.03855

Results

- low-p_T jets,
- double tag in ALFA,
- anti-elastic cut.
- one reconstructed vertex,
- proton-jet correlation: relative energy loss,
- number of tracks outside the jet system,
- amount of energy in forward calorimeters.

Pure (> 90%) and statistically significant measurement should be feasible with data collected by ALFA during Run II.

Anti-elastic Cut

Summary

High- p_T jets (double tag)

- Measurement of the exclusive jet production will be possible in the ATLAS detector during normal runs (low beta, high pile-up) using the AFP detectors.
- Very challenging measurement difference of six orders of magnitude between signal and background cross-sections (impossible to measure without AFP)!
- Results published in: ATL-PHY-PUB-2015-003

Low- p_T jets (single tag)

- \bullet Smaller masses \to larger cross-sections \to smaller pile-up \to cleaner events.
- High signal-to-background ratio.
- High statistical significance.
- Results published in: Eur. Phys. J. C 75 (2015) 320.

Low- p_T jets (double tag)

- Pure (> 90%) and statistically significant measurement should be feasible with data collected by ALFA during Run II.
- Results published in: Acta Phys. Pol. B 47 (2016) 1745.