Forward Jets in pA as a Sign of Saturation

Cole Lindsey University of Kansas

QCD at LHC: forward physics and UPC collisions of heavy ions, Trento, Italy

September 26-30, 2016

Parton Distribution

- Two defining variables for parton distribution
 - x is longitudinal momentum loss w.r.t hadronic momentum
 - K_T is the parton transverse momentum
- BFKL and DGLAP govern parton distribution dependence on x and k_T
 BK evolution needed to describe recombination
- At low x we expect to see gluon saturation effect
- Q_s(x) is saturation scale which separates dilute and dense compositions

Gluon Saturation

- Gluon saturation is the balance between gluon radiation and recombination which occurs at low x
- Important for understanding proton makeup
- We look in pA collisions because we want as dense an object as possible

Di-hadron final-state kinematics

$$k_1, y_1$$

$$k_{2}, y_{2}$$

$$x_p = \frac{k_1 e^{y_1} + k_2 e^{y_2}}{\sqrt{s}}$$

final state:
$$k_1, y_1 = k_2, y_2 = \frac{k_1 e^{y_1} + k_2 e^{y_2}}{\sqrt{s}} = x_A = \frac{k_1 e^{-y_1} + k_2 e^{-y_2}}{\sqrt{s}}$$

scanning the wave functions:

$$x_p \sim x_A < 1$$
 central rapidities probe moderate x

$$x_p$$
 increases $x_A \sim unchanged$

$$x_p \sim 1, x_A \leq 1$$

forward/central doesn't probe much smaller x

$$x_p \sim \text{unchanged}$$
 $x_A \text{ decreases}$ $x_p \sim 1, x_A << 1$

forward rapidities probe small x

Nuclear Modification Factor

 R_{pA} measures initial and final state effects in nuclear collisions

 $\bullet R_{DA} = 1$ means absence of nuclear effects or no aluon

saturation

$$R_{pA} = \frac{1}{\langle T_{pA} \rangle} * \frac{\frac{\mathrm{d}N_{pA}}{\mathrm{d}p_T}}{\frac{\mathrm{d}\sigma_{pp}}{\mathrm{d}p_T}}$$

Finding Signals at LHC

 We will be looking for suppression of di-hadron azimuthal correlation of forward dijets in pA vs pp

Very forward calorimeter CASTOR in CMS

Total weight: 14000t Overall diameter: 15m

Acceptance: $-6.6 < \eta < 5.2$, $|\eta| > 8.2$

Tracker
66M Si pixels
9.6M Si strips

ECAL
76k PbWO4 crystals

Pre-

- Acceptance: $-6.6 < \eta < -5.2$
- E.M. section: 20 X₀, 32 channels
- Hadronic section: 10 λ₁, 192 channels
- Quartz-Cherenkov calorimeter

~150 cm

Zero Degree Calorimeter

Iron

Yoke

Tungsten/Quartz 16 ch. Located in TAN at +- 120m 250 drift tube chambers 540 cathode strip chambers

Muon Chambers

610 resistive plate chambers

Going Forward

- Studying possible L1 triggers for pPb
- pPb data taken at the end of this year will provide enough data to begin looking for gluon saturation effects
- Implementing saturation effects in Monte Carlo

References

- [1] Cyrille Marquet "Confirming RHIC saturation signals at the LHC"
- [2] A. van Hameren, P. Kotko, K. Kutak, C. Marquet, E. Petreska, S. Sapeta, arXiv:1607.0312; P. Kotko, K. Kutak, C. Marquet, E. Petreska, S. Sapeta, A. van Hameren, JHEP 1509 (2015) 106
- [3] Christophe Royon for CMS-CASTOR group "Jets, diffraction & CASTOR"