Status of the AFP Detector

Maciej Trzebiński

on behalf of the ATLAS Collaboration

Institute of Nuclear Physics Polish Academy of Sciences

QCD at LHC: forward physics and UPC collisions of heavy ions

29th September 2016

ATLAS Forward Proton Project

AFP TDR: CERN-LHCC-2015-009, ATLAS-TDR-024

Phase-1: AFP0+2 (2016)

- 2 horizontal Roman Pot stations at 205 (NEAR) and 217 m (FAR) in ATLAS C side installed!
- study beam background in low and high intensity runs
- measure diffractive and exclusive events with one tag in a special low-μ runs (AFP trigger ATLAS)

Phase-2: AFP2+2 (2017+)

- add 2 horizontal RPs at 205 and 217 m on A side
- install time-of-flight detectors in far stations on both sides new AFP trigger
- measure double tagged diffractive and exclusive events
- deliver diffractive triggers to ATLAS during standard runs

Physics of Interest

Goals:

- commission the detector; explore the environment close to the LHC beam **DONE!**
- special runs at low- μ , focusing on high-rate diffractive physics processes **DONE!**
- staged installation:
 - Winter 2015-2016 shutdown installation of a single AFP arm with two Roman pot stations, the 0+2 AFP configuration (AFP0+2) DONE!
 - Winter 2016-2017 shutdown installation of the second detector arm
- AFP 0+2:
 - two silicon tracking detectors and a Level-1 Track Hit trigger (hits in 2 out of 3 SiD planes)
 - physics: **soft single diffraction**, **single diffractive jets**, *W*, jet-gap-jet, exclusive jet production (one tag)

AFP 2+2:

- two silicon tracking detectors on second arm and time-of-flight detectors on both far stations
- ophysics:
 - \bullet special runs: soft central diffraction, central diffractive jets, jet-gap-jet, $\gamma+{\rm jet},$
 - regular runs: exclusive jet production, anomalous couplings.

- Gap measurement in ATLAS does not distinguish SD from DD
- More information about events with forward proton tagging
- High cross sections → low lumi needed → possible with lowest pile-up
- AFP 0+2 single diffraction AFP 2+2 - central diffraction

Eur. Phys. J. C72 (2012) 1926

Origin of forward protons

- $\bullet\,$ High- ξ protons in ND and DD due to hadronisation
- Significant differences between MC generators
- Important also for simulating cosmic air showers

Single Diffractive Jet Production

Motivation:

- cross section measurement
- gap survival probability
- Pomeron structure studies
- Reggeon contribution
- Pomeron universality between *ep* and *pp*

large rapidity gaps at the ATLAS experiment

Details can be found in: CERN-PH-LPCC-2015-001

Physics at high μ : W, Z and photon pairs

Motivation:

- measurement of W and Z boson pair production via the exchange of two photons allows to perform a stringent test of the electroweak symmetry breaking,
- tag in AFP results in gain in sensitivity of about two orders of magnitude over a standard ATLAS analysis.

Details can be found in:

- http://arxiv.org/abs/0808.0322
- http://arxiv.org/abs/0912.5161

Motivation:

- shed a light on topics connected to gluon distributions in proton as such events are expected to be purely of gluonic nature,
- measurement of exclusive jets will set constraints on the exclusive Higgs production,
- without AFP measurement is not possible.

Details can be found in: https://cds.cern.ch/record/1993686

Test-beams

Schedule

- Aug. 2012, CERN 3D pixels
- Oct. 2012, CERN 3D pixels
- Jul. 2014, FermiLab ToF
- Nov. 2014, CERN Integration
- Sep. 2015, CERN Integration
- Apr. 2016, CERN Tracker
- Jun. 2016, CERN ToF
- Sep. 2016, CERN ToF and Integration

У

AFP Beam-Test Prototype Setup

Position and ToF Detectors

Radiator bar

Light-guide bar

ToF LQbars

Left: time differences between the two SiPM reference Right: time differences between the LQbars of the second train (2A and 2B) and SiPM1

Details can be found in: JINST **11** (2016) P09005, http://arxiv.org/abs/1608.01485

Infrastructure and Detectors

Station

- based on the CMS-PPS/TOTEM horizontal stations
- two stations installed 18th Jan. on side C
- under LHC vacuum and baked-out since 3 Feb.
- status: connected and fully operational

Detectors

- technology: slim-edge 3D ATLAS IBL pixel sensors bonded with FE-I4 readout chips
- pixel size: 50x250 μm²
- single layer resolution: \sim 6 μ m in x
- 3(4) detectors in NEAR(FAR) station
- trigger in 2016: majority vote (2 out of 3; two chips in FAR station are paired and vote as one)
- from 2017 our trigger will be based on ToF detectors (A and C side); our trigger menu will change

- Each RP is kept under secondary vacuum:
 - reduce stress and limit "bulge" of thin window,
 - allows cooling below 0 deg. (prevents icing of detectors).
- Two vacuum pumps (P1, P2) per arm located in RR17 alcove.
- Four operating modes:
 - mode 1: alternating between P1 and P2,
 - mode 2: use P1, if problem switch to P2,
 - mode 3: use P2, if problem switch to P1,
 - mode 4: use both pumps.
- Small leak observed in near station. Overall leak rate: \sim 0.01 mbar / s.

Cooling System – Connections

Vortex cooling technology – system runs purely on compressed air.

Cooling System – Station

Staged approach:

- precooling of input air in AirCooler box,
- coooling with Vortex tube installed on RP.

Efficient cooling: temp. down to -30 $^{\circ}$ C with detectors powered on.

Operational requirements: -5 °C.

Online temperature regulation.

Temperature sensors (NTC):

- each station:
 - each detector plate (on flex),
 - heat exchanger (NTC + PT1000),
 - pot wall (up + under second thin window),
 - flange (cold output of Vortex tube + HV for ToF),
 - LTB.
- VReg. crate.
- AirCooler box:
 - hot output of VT,
 - cold output of VT,
 - output of box.

Radiation sensors:

- bottom of each pot,
- VReg. crate,
- far station LTB,
- RR17 alcove.

Pot Motion and Controls

,,Specification and Validation of the Motion Control System of the ATLAS Forward Proton Roman Pots"

- mechanical stops installed to prevent damage of fragile electrical stop
- retraction with springs to the HOME position tested
- positions of IN, OUT, and HOME switch and Electrical Stop were set according to the laser measurements

Both stations calibrated (18 Feb.)

AFP Beam Interlock System

- copy of ALFA BIS
- AFP Beam Interlock System successfully commissioned from the central DCS up to the LHC interface (CIBU)

- hardware commissioning tests related to the position control of the 2 AFP Roman Pots done:
 - correct mapping and signal distribution of the LHC flags between the AFP Interlock and AFP position control system
 - signal integrity of the HOME SWITCH signal from RP station to AFP interlock and the transmission of the COPY HOME switch back to the PXI
 - EXTRACTION RP SWITCH and OVERRIDE signals from the ATLAS control room
 - HOLIDAY MODE KEY
- status: system is fully commissioned

Detector Control System

DCS is responsible for coherent and safe operation of the detector:

- provides tools for bringing the detector into desired operational state, monitors its parameters, signals any abnormal behaviour and performs actions,
- defined subset of detector parameters is stored in data bases for later inspections,
- graphical user interfaces allow overall detector operation and visualisation.

AFP is integrated with ATLAS DCS system.

Architecture of AFP TDAQ:

- High Speed Input Output board (HSIO): DAQ board with many high-speed and low-speed I/O channels, Xilinx Artix 200 FPGA, mezzanines with ATLAS TTC and RCE (Reconfigurable Cluster Element),
- frontends are configured at a 40 Mbps, the data is readout at 160 Mbps
- AFP is fully integrated with ATLAS TDAQ system:
 - AFP trigger signals are generated, combined (OR, AND, majority vote logics), synchronized with LHC clock and send to ATLAS Central Trigger Processor,
 - trigger signals are sent via fast air-core cables and reach CTP within the standard ATLAS latency (85 BCXs),

Alignment and Data Taking

BBA procedure:

- scraping: close collimator to trim the beam,
- approach the beam with detector,
- monitor rates in BLMs and AFP sudden increase marks the beam position.

Loss maps procedure:

- move detectors to the operational position (*e.g.* 20σ),
- distort beam trajectory,
- observe rates in BLMs and AFP beam should not touch the Roman pot.

BBA and LM for AFP were done on:

- 19-22 April,
- 23-24 September.

Data Runs

AFP detectors took high- μ data during LHC ramp-up:

- 23/04 3 bunch fill 2.2 nb⁻¹ of data collected
- 24/04 12b 0.46 pb⁻¹
- 25/04 12b 0.71 pb⁻¹
- 7/05 49 and 86 b 8.1 pb⁻¹
- 10/05 300 b 7.9 pb⁻¹
- 13/05 600 b 8.0 pb⁻¹
- 10/06 3 b 3.8 nb⁻¹
- 1/08 3 b 23 nb⁻¹
- 25/09 3 b 21 nb⁻¹
- 25/09 3 b 21 nb⁻¹
- 25/09 157 b 17.6 nb⁻¹
- $25/09 589 \text{ b} 35.6 \text{ nb}^{-1}$ (only far station)

and during special low- $\!\mu$ runs:

- $1/08 600 \text{ b} 39 \text{ nb}^{-1}$ with $0.01 < \mu < 0.03$
- after MD4 (?)

AFP 0+2 was installed ...

... successfully took data ...

... and is ready for 2+2 phase!

This work has been partially supported by the Mobility+ programme number $1285/\mathsf{MOB}/\mathsf{IV}/2015/0.$