Diamond Timing Detector for TOTEM

David Lucsanyi
on behalf of the TOTEM collaboration

QCD at LHC: forward physics and UPC collisions of heavy ions,
Trento, 2016
Motivation for timing

Central Diffraction (in high β^* runs):

\[p + p \rightarrow p + X + p \]

- Longitudinal vertex reconstruction at IP5
 $\sigma_z \approx 1\text{cm}$, $\Delta t \approx 50\text{ ps}$
- Pile-up reduction

CT-PPS project
(See earlier talk by Jan Kaspar)

Timing scheme

scCVD diamond as a detector

- Fast and good charge collection
- Pixel pattern is easy to implement
- Low material budget
- Radiation hardness
- Low noise

- Large capacitance
- Low signal (~12000 e)
 - Impedance adaptation
 - FEE bandwidth optimization
 - Maximize preamplifier rise time
 - Maximize S/N

High purity, electronic-grade scCVD crystals from Element6 with <100> orientation (4.5x4.5x0.5 mm) were used

Diamond metallization

• Electrodes are needed to be created on the surface of the crystals
• The metallization processes are company specific
 • Main steps: Laser polishing and PVD
• We have tested different metallization types. They were made by:
 • GSI (Cr-50 nm + Au-150 nm)
 • PRISM (100 nm of 10% Ti and 90% W alloy)
 • Applied Diamond Inc. (Cr-50 nm + Au-150 nm)
• Non-metallized region on the edge is 150 μm, strips are separated by 100 μm

Smallest strips on a crystal with 5 strip (Cr+Au) and 4 strip (Ti-W)
Front End Electronics

- Only 2.9 fC charge are released by a MIP in a 500 μm diamond plate
- Main noise source: first stage amplifier
- FEE design must compromise between speed and low noise
- The amplification chain consists of a transconductance preamplifier followed by a single stage voltage amplifier and by a booster who also shapes the analogue voltage output signal. This design has been adapted from the HADES collaboration.
- Total input capacitance: 0.2 - 2 pF
- Low-C feedback

Diamond pixel layouts

- High β^*, low luminosity
- TOTEM standalone runs
- Vertical Diamond Detector
- Read-out with SAMPIC

- Low β^*, high luminosity
- CT-PPS runs
- Horizontal Diamond Detector
- Read-out with NINO
Vertical Board Prototype
Test Beams: DESY and SPS H8

Test Beam at DESY:
- a mixed pion and electron beam
- To measure the efficiency the tracks have been reconstructed with the DATURA tracking telescope (6 Si pixel detector planes)
Test Beam results: Efficiency

- >98% uniform efficiency
- No eff. Loss due to pattern
- Low S/N signal
Test Beam results: Timing performance

- Average Rise time: 1.4 - 1.7 ns
- Average S/N: 40 - 50
- Time resolution is found to slightly increase with the capacitance
- S/N > 25 for strips, S/N > 18 without strips

Time res. vs. capacitance

Time res. of one single sensor

- Time res. has not been degraded due to SAMPIC waveform digitizer, but it has been degraded due to NINO chip (by ~20 ps)!
Vertical Detector Package inside RP
Installation at LHC, 2015 November

- Operation for 48 hours during an LHC pp runs at 5 TeV
 - RPs were in the “garage” position
 - Signal rate was 10-100 Hz/electrode.
 - It was operated at 500 V
 - With a SAMPIC unit the time res. of the smallest capacitance pixels was ~90 ps
 - The noise of the electronic board at T=25°C was 15-28 mV RMS
Horizontal Board Geometry - coarse tracking

- We increased the granularity provided by each detector to enhance the tracking capability
- Geometry configuration has been studied with the goal to optimize the x-resolution for $M = 750 \text{ GeV} - 1 \text{ TeV}$
- Space resolution of 150 μm can be reached
- Occupancy is almost the same for all pixel
Diamond quality: leakage current

- Each strip of each diamond has been tested in term of leakage current and its stability over time
- The 2x16 best diamonds were selected with current < 1 nA @ 1 kV

![Leakage current of Diamond 2810753-2](image)

- Presence of air and water vapor increase surface conduction, so in vacuum their performance can be more better!
- Vacuum chamber for tests is under design
Diamond quality: Charge collection stability

- Charge collection (signal current) stability over time has been also tested for each diamond with a β radioactive source (~36 MBq)
- Sometime strange asymmetric behaviour were found

![Diamond current stability with source at 1kV](image)
Detector performance

• Minor modifications on the electronics were necessary to adapt the board to the new pattern and to make it HV safe
• Each board has been tested separately in vacuum to assure that the coating procedure was done correctly
• Each channel has been tested with a β source
• Some noise was picked up when boards were put together with a common power source
 • RF shielding was necessary
 • Most effective solution: reduction of amplifier gain (without any loss in efficiency or time resolution)
Horizontal detector package

- Pressure and cooling tests of the RP packages in SPS H8
 - Operational T for electronics: 30°C (cooling: 10-15 °C).
 - Operational p: ~40 mb
 - T/p stability also have been proved (including overpressure test and T down to -25 °C).

2 RP with horizontal detector packages have been successfully installed at LHC during TS1 (June 2016)
Read-out of the new Horizontal packages

- The readout electronics is based on the Digitizer board
 - FPGA based (Microsemi SmartFusion)
 - NINO discriminators (Leading and trailing edges measured)
 - Optimization (attenuation and capacitance)
 - HPTDC as a Time to Digital converter
 - GOH (Totem Opto Hybrid data Transfer) Or POH (New CMS Opto hybrid for data Transfer)

- Firmware
 - Data packing (Totem Si Strip data Format)
 - Buffering at any L1
 - I²C configuration registers

Commissioning of the Read-out will be finished nowadays.
Summary

• TOTEM has made a great effort in the R&D of Diamond Time-Of-Flight detectors to reconstruct longitudinal vertex position and reduce pile-up

• First vertical prototype installed at LHC worked well in Nov 2015

• We have successfully reached the required timing performance, furthermore the detector was also optimized for tracking purpose

• Each channel and board has been tested and quality is assured in terms of HV and signal stability, both RP package tested in the operational T and p conditions and passed all the safety tests

• Two new horizontal Diamond Timing Detector with 4-4 boards have been installed in LHC tunnel during TS1 and will be operational soon

Thank you for your attention!