

Ultra-peripheral collision measurements from ALICE

Christopher Anson

ALICE Collaboration

Creighton University

Outline

- ☐ ALICE detector
- ☐ Run 1 triggers
- ☐ UPC background material
- ☐ Results from Run 1 analyses
- ☐ Trigger changes for Run 2
- ☐ Ongoing and planned analyses for Run 2

The ALICE detector (ACORDE **ALICE** (EMCAL) ABSORBER (TRD TRACKING CHAMBERS (HMPID ZDC ~116m from I.P. MUON PMD V0 FILTER TRIGGER CHAMBERS ZDC -116m from I.P., ITS DIPOLE PHOS MAGNET Central detectors

Central detectors:

- ☐ TPC for tracking and particle identification ($|\eta|$ <0.9)
- ☐ TOF and SPD for triggering

Muon Arm

Muon Arm and forward detectors

Muon Arm and trigger detectors

- ☐ Triggering, tracking and muon identification
- □ V0 counters provide veto to exclude events with hadronic interactions
- ☐ZDC can measure n & p from photo-dissociation
- \square AD (not shown) since Run 2 for improved veto: (-6.9 < η < -4.9) and (4.9 < η < 6.3)

Run 1 UPC triggers

Mid-rapidity triggers

Muon arm triggers

TORMIN	Sponia	to tel	Š,	740	Di. Muo	Much	to stane	top to	Č
Pb-Pb 2010	✓ *								
	✓	✓	✓						
Pb-Pb 2011	√ BtoB [†]	✓	✓		✓		> 1 GeV/c	✓	✓
p-Pb 2013	✓ BtoB [†]	✓ BtoB [†]	✓		✓	✓	> 0.5 GeV/c		✓

^{*}early, low luminosity runs

[†] BtoB = back-to-back topology requirement

ALICE events

☐ ALICE has excellent PID capabilities regardless of event multiplicity

 $\psi(2s) \rightarrow \mu^+ \mu^- \pi^+ \pi^-$

Red tracks: μ^+ , μ^- Yellow tracks: π^+ , π^-

ALICE

ALICE PID

- TPC identifies particles effectively at lower p. In UPC, p_T <0.4 GeV/c for π^{\pm} .
- \square $\pi^+\pi^-$ and remaining e⁺e⁻ and $\mu^+\mu^-$ distinguishable using TPC dE/dx.

☐ TOF identifies particles more effectively at higher *p* than TPC.

The combined response from different detectors may be used in particle identification.

Photoproduction in ultra-peripheral collisions

PoS (DIS2016) 191

- \square Ultra-peripheral collisions have impact parameter $>R_1+R_2$.
- ☐ EM field of relativistic heavy ion/proton equivalent to photon flux.
- □ Photon flux \propto Z² (=6724 for Pb) so heavy ions are an excellent photon source.
- \Box Photo-nuclear, photon-nucleon and $\gamma\gamma$ interactions can occur in ultra-peripheral collisions.
- \square Photon energy spectrum extends to $\gamma \hbar c/R$
 - \square γ = Lorentz factor
 - □ R≈7 fm for heavy ions

Nuclear gluon distribution and $d\sigma/dy$

 \Box The cross section d σ /dy for the interaction A+A->A+A+V is given by

$$\frac{d\sigma}{dy} = \omega_1 \frac{dn_{\gamma}}{d\omega_1} \sigma_{\gamma A \to VA}(\omega_1) + \omega_2 \frac{dn_{\gamma}}{d\omega_2} \sigma_{\gamma A \to VA}(\omega_2)$$

where 1, 2 label which colliding particle emitted the photon.

 \square Ryskin[†] (1993) relates d σ /dt and the gluon distribution g(x,Q²):

$$\left. \frac{d\sigma}{dt} \right|_{t=0} = \frac{\alpha_s^2 \Gamma_{ee}}{3\alpha M V^5} 16\pi 3 \left[xg\left(x, \frac{M^2}{4}\right) \right]^2$$

for the interaction $\gamma + A \rightarrow V + A$.

 \Box During the calculation of d σ /dy from d σ /dt the proportionality d σ /dt \propto [g(x,Q²)]² factorizes leading to

$$\frac{d\sigma}{dv} \propto [g(x,Q^2)]^2$$

[†] Z. Phys. C 57 (1993) 89-92

JHEP 0904 (2009) 065 & arXiv:1106.5682 **ALICE** 1.4 Q2 = 1.69 GeV2 1.2 $R_{\rm G}^{\ m Pb}$ 1.0 HKN07 0.8 0.6 EP509 0.4 0.2 0.0 10⁻¹ x 10^{-3} 10^{-2} 10-4

Exclusive J/ψ production

☐ Uncertainty in the nuclear gluon distribution,

$$R_G = \frac{g_A(x, Q^2)}{A \cdot g_p(x, Q^2)}$$

leads to uncertainty in the cross section $d\sigma/dy$.

Exclusive J/ψ production

- Cross section much smaller than impulse approximation and STARLIGHT
- Consistent with models with moderate gluon shadowing (AB-EPS09 parameterization)

JHEP 0904 (2009) 065 & arXiv:1106.5682 Q² = 1.69 GeV² HKN07 EK598 EP509

 10^{-3}

10-4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

10⁻¹ X

Exclusive J/ψ production

10-2

- \square Guzey, Kryshen, Strikman and Zhalov (2013) converted ALICE d σ /dy values back to R_G^{Pb} values.
- \Box The d σ /dy measurements provide significant constraints on the models.

Exclusive $\psi(2s)$ production

Exclusive $\psi(2s)$ production

- ☐ Cross section smaller than impulse approximation
- ☐ Cross section larger than cases with strong shadowing
- ☐ Consistent with models with no shadowing or moderate shadowing (AN EPS09)
- ☐ Large (23%) uncertainties

ALI-PUB-96039

Exclusive $\psi(2s)$ production

 \Box Enhancement of ψ(2s) cross section relative to J/ψ in Pb-Pb compared to p-p

☐ Large error, so needs confirmation

☐ Measurement consistent with moderate gluon shadowing (AN-AB-EPS09)

Exclusive ρ^0 production

- ☐GDL 2X larger than STARLIGHT
- $\Box \rho^0$ measurement consistent with STARLIGHT and GM

- $\Box \rho^0$ cross section follows trend at STAR
- \square STARLIGHT matches ρ^0 measurements
- ☐ Difference in models due to inelastic nuclear shadowing.

$yy \rightarrow e^+e^-$ measurement

- ☐ Good agreement between measured $yy \rightarrow e^+e^-$ cross sections and STARLIGHT for $0.6 < M_{ee} < 10 \text{ GeV/c}^2$.
- ☐ ATLAS finds similar agreement with STARLIGHT for $\gamma\gamma \rightarrow \mu^{+}\mu^{-}$ from 10 < M_{ee} < 100 GeV/c².
- ☐ Is there room for "strong field effects" not included in STARLIGHT?

ALI-PREL-69137

ALICE

Exclusive J/ψ production in p-Pb

- ☐ Good agreement with previous measurments for 21 < W_{yp} < 45 GeV (p-Pb)
- □ Measurement for 580 < W_{yp} < 950 GeV (p-Pb) consistent with power law: $σ∝W_{yp}^{δ}$
 - \Box ALICE: δ = 0.68+/-0.06
 - \Box ZEUS: δ = 0.69+/-0.04
 - \Box H1: δ = 0.67+/-0.03
- ☐ Suggests no change in gluon PDF for proton from HERA to LHC energies - PRL 113 (2014) 232504

Exclusive J/ψ production in p-Pb

-2.5 < y < -1.241 < W_{yp} < 86 GeV

1.2 < y < 2.7 $287 < W_{yp} < 549 \text{ GeV}$

-0.8 < y < 0.8 $100 < W_{yp} < 246 \text{ GeV}$

- \Box New measurements expected between current ones and in Run 2 at even larger $W_{yp.}$
- \square ALICE will measure in range 21 < W_{yp} < 1160 GeV (x \approx 10⁻² to 10⁻⁵)

Run 2 UPC triggers

Mid-rapidity triggers

Muon arm triggers

12 TOF him	SPONIE	AD Veto	to ter		340	Di. Muo	Much	to signa	to A ter	Š
Pb-Pb 2015	✓	✓	*	✓			✓	> 1 GeV/c	✓	✓
	BtoB [†]	BtoB [†]								
p-Pb 2016	✓	✓	√ *	✓		✓	✓	> 0.5 GeV/c		✓
	BtoB [†]	BtoB [†]								

^{*} AD improves veto at forward rapidities: (-6.9 < η < -4.9) and (4.9 < η < 6.3)

[†] BtoB = back-to-back topology requirement

Run 2 Pb-Pb (Nov/Dec 2015)

- \square Pb-Pb at $\sqrt{s_{NN}}$ = 5.02 TeV
 - ☐ Mid-rapidity: Integrated luminosity 6X larger than in Run 1
 - ☐ Muon arm: Integrated luminosity 50X larger than in Run 1
 - \Box J/ ψ cross section expected to increase by 50% (STARLIGHT)
 - ☐ Y cross section expected to increase by 300% (STARLIGHT)
 - \square Measure J/ ψ at lower values of x using ZDCs to identify photodissociation events

Run 2 p-Pb (Nov/Dec 2016)

$$\square$$
 p-Pb at $\sqrt{s_{NN}}$ = 5 and 8 TeV \square Pb-p at $\sqrt{s_{NN}}$ = 8 TeV: can measure W_{yp} > 1 TeV. \square Does gluon saturation occur?

- Continued power law?
- Gluon saturation?

Run 2 measurements

\square Run 2 Pb-Pb and p-Pb data will allow for results at higher energies ($\sqrt{s_{NN}}$ and W _{yp}) with higher statistics and smaller statistical and systematic uncertainties.
\Box Higher statistics will allow for more differential measurements in bins of y , p_{T} for example.
\square At higher energies new particles may be measured such as η_C and $\Upsilon.$
☐ Tighter constraints for models may be obtained.
□ Some open questions may be investigated: □ Does power law dependence of $\sigma_{\gamma p \to J/\psi p}$ continue for J/ψ ? □ Is the enhancement in ratio $\sigma(\psi(2s))/\sigma(J/\psi)$ for Pb-Pb confirmed?

Summary

- ☐ A variety of Run 1 results from ALICE provide new constraints on models.
- ☐ The results tend to favor models with moderate gluon shadowing.
- \Box Current results for J/ ψ can't distinguish definitively whether saturation is occurring.
- ☐ Ongoing and planned analyses for Run 2 will provide more results at higher energies and with more statistics and smaller uncertainties.