DISSECTING JETS

Simone Marzani University at Buffalo, The State University of New York

MC4BSM 2017 SLAC May 11th -13th 2017

Outline

- Looking inside jets: an introduction
- Two examples:
 - groomed jet mass
 - prongs' momentum balance z_g
- Conclusions

Looking inside jets

- A large class of modern jet definitions is given by sequential recombination algorithms
- Start with a list of particles, compute all distances d_{ij} and d_{iB}
- Find the minimum of all d_{ij} and d_{iB}

for a complete review see G. Salam, Towards jetography (2009)

- A large class of modern jet definitions is given by sequential recombination algorithms
- Start with a list of particles, compute all distances d_{ij} and d_{iB}
- Find the minimum of all d_{ij} and d_{iB}
- If the minimum is a d_{ij}, recombine *i* and *j* and iterate

d_{ij} (weighted) distance between i j d_{iB} external parameter or distance from the beam ...

- A large class of modern jet definitions is given by sequential recombination algorithms
- Start with a list of particles, compute all distances d_{ij} and d_{iB}
- Find the minimum of all d_{ij} and d_{iB}
- If the minimum is a d_{ij}, recombine / i and j and iterate

d_{ij} (weighted) distance between i j d_{iB} external parameter or distance from the beam ...

- A large class of modern jet definitions is given by sequential recombination algorithms
- Start with a list of particles, compute all distances d_{ij} and d_{iB}
- Find the minimum of all d_{ij} and d_{iB}
- If the minimum is a d_{ij}, recombine /
 i and j and iterate
- Otherwise call *i* a final-state jet, remove it from the list and iterate

d_{ij} (weighted) distance between i j d_{iB} external parameter or distance from the beam ...

- A large class of modern jet definitions is given by sequential recombination algorithms
- Start with a list of particles, compute all distances d_{ij} and d_{iB}
- Find the minimum of all d_{ij} and d_{iB}
- If the minimum is a d_{ij}, recombine /
 i and *j* and iterate
- Otherwise call *i* a final-state jet, remove it from the list and iterate

d_{ij} (weighted) distance between i j d_{iB} external parameter or distance from the beam ...

Actual choice for the measure d_{ij} determines the jet algorithm

Searching for new particles:

resolved analyses

• the heavy particle X decays into two partons, reconstructed as two jets

• look for bumps in the dijet invariant mass distribution

Searching for new particles: boosted analyses

- LHC energy (10⁴ GeV) \gg electro-weak scale (10² GeV)
- EW-scale particles (new physics, Z/W/H/top) are abundantly produced with a large boost

- their decay-products are then collimated
- if they decay into hadrons, we end up with localized deposition of energy in the hadronic calorimeter: a jet

CMS Experiment at LHC, CERN Run 133450 Event 16358963 Lumi section: 285 Sat Apr 17 2010, 12:25:05 CEST

JETS Nimated, energetic rs of particles

R

00000000000

We want to look inside a jet

exploit jets' properties' to distinguish signal jets from bkg jets

R

h

 \boldsymbol{q}

13

 $p_t > 2m/R$

- First jet-observable that comes to mind
- Signal jet should have a mass distribution peaked near the resonance

• However, that's a simple partonic picture

A useful cartoon

inspired by G. Salam

A useful cartoon

inspired by G. Salam

underlying event (multiple parton interactions)

jet

hadronization

pert. radiation (parton branching)

A useful cartoon

jet

inspired by G. Salam

underlying event (multiple parton interactions)

hadronization

pert. radiation (parton branching)

pile-up (multiple proton interactions)

Effect on jet masses

- In reality perturbative and non-pert emissions broadens and shift the signal peak
- boosted X
 Underlying vent an atpite-up typically enhance the jet mass (both signal and background)

8

ATLAS, JHEP 1309 (2013) 076

Beyond the mass: substructure

- Let's have a closer look: background peaks in the EW region
- Need to go beyond the mass and exploit jet substructure
- Grooming and Tagging:
 - I. clean the jets up by removing soft junk
 - 2. identify the features of hard decays and cut on them

ATLAS, JHEP 1309 (2013) 076

Beyond the mass: substructure

- Let's have a closer look: background peaks in the EW region
- Need to go beyond the mass and exploit jet substructure
- Grooming and Tagging:
 - I. clean the jets up by removing soft junk
 - 2. identify the features of hard decays and cut on them
- Grooming provides a handle on UE and pile-up

Soft Drop

Larkoski, SM, Soyez and Thaler (2014)

Soft-gluon phase space

Soft gluons off a hard parton (a quark for definiteness)

22

Emission probability is uniform in the $(\log z, \log \theta)$ plane:

 $dP_i \sim \frac{\alpha_s}{\pi} C_r \frac{dz_i}{z_i} \frac{d\theta_i}{\theta_i}$

Soft Drop as a groomer

soft drop always removes soft radiation entirely (hence the name)

• for $\beta > 0$ soft-collinear is partially removed

Soft Drop and mMDT

soft drop always removes soft radiation entirely (hence the name)

• for $\beta = 0$ soft-collinear is also entirely removed (mMDT limit)

Soft Drop as a tagger

soft drop always removes soft radiation entirely (hence the name)

• for $\beta < 0$ some hard-collinear is also partially removed

Groomed jet properties

courtesy of J.Thaler

- smooth distributions
- flatness in bkg can be achieved for $\beta=0$
- it's becoming the standard choice for CMS

Soft Drop vs Trimming

Soft drop in grooming mode (β >0) works as a dynamical trimmer

- trimming had as an abrupt change of behavior due to fixed R_{sub}
- loss of efficiency at high pt
- ${\ }$ in soft-drop angular resolution controlled by the exponent β
- phase-space appears smoother

Soft drop at NNLL

• soft-drop mass: something $W \in \mathcal{T}_{ah}^{p} \to \mathbb{R}_{ah}^{p} = \mathbb{R}_{ah}^{p$

reduced sensitivity to non-pert effects

- going to NNLL reduces scale variation but small changes in the shape
- for $\beta=0$ LL is zero, so state-of-the art NNLL is actually NLL

The groomed jet mass

Towards theory / data comparison

- the time is mature for theory / data comparison
- reduced sensitivity to non-pert physics (hadronization and UE) should make the comparison more meaningful
- substructure measurements of QCD jets can pin down poorly constrained gluon radiation (tuning)
- pick the observable we know the most about:

JET MASS for β =0 soft-dropped (i.e. mMDT) jets

Upcoming CMS measurement, however, as usual:

Towards theory / data comparison

- the time is mature for theory / data comparison
- reduced sensitivity to non-pert physics (hadronization and UE) should make the comparison more meaningful
- substructure measurements of QCD jets can pin down poorly constrained gluon radiation (tuning)
- pick the observable we know the most about:

JET MASS for β =0 soft-dropped (i.e. mMDT) jets

Upcoming CMS measurement, however, as usual:

pt vs pt^{mMDT}

SM, Schunk, Soyez (2017)

first choice: transverse momentum before or after grooming ?
for β=0 the groomed p_T spectrum is not IRC safe (but it's Sudakov safe, see later)

groomed away if $z < z_{cut}$ leaving the collinear pole from the virtual uncancelled

pt vs pt^{mMDT}

SM, Schunk, Soyez (2017)

first choice: transverse momentum before or after grooming ?
for β=0 the groomed p_T spectrum is not IRC safe (but it's Sudakov safe, see later)

groomed away if $z < z_{cut}$ leaving the collinear pole from the virtual uncancelled

pt vs pt^{mMDT}

SM, Schunk, Soyez (2017)

first choice: transverse momentum before or after grooming ?
for β=0 the groomed p_T spectrum is not IRC safe (but it's Sudakov safe, see later)

groomed away if $z < z_{cut}$ leaving the collinear pole from the virtual uncancelled

- large hadronization because of IRC unsafely
- UE (and pile-up?) resilient because of grooming

Jet mass with pr^{mMDT}

mass distribution IRC safe in both cases

SM, Schunk, Soyez (2017)

- however, resummation is different event at LL!
- nitty gritty details (for who's interested)

Jet mass with pr^{mMDT}

- mass distribution IRC safe in both cases
- however, resummation is different event at LL!
- nitty gritty details (for who's interested)
- At LO we have one emission: no changes wrt p_T
- More interesting structure at NLO

$$\rho \frac{d\sigma^{\text{LL,NLO},C_F^2 a}}{d\rho} = \left(\frac{\alpha_s C_F}{\pi}\right)^2 \rho \int_{p_{t1}}^{p_{t2}} dp_{t,\text{jet}} \sigma_q(p_{t,\text{jet}}) \qquad \begin{array}{l} \text{gluon I fails mMDT}\\ \text{but cannot carry away too much} \\ \cdot \int_0^1 \frac{d\theta_1^2}{\theta_1^2} \int_0^1 dz_1 \, p_{gq}(z_1) \Big[\Theta\left(z_{\text{cut}} > z_1\right) \Theta\left((1 - z_1)p_{t,\text{jet}} > p_{t1}\right) - 1\Big] \\ \cdot \int_0^1 \frac{d\theta_2^2}{\theta_2^2} \int_0^1 dz_2 \, p_{gq}(z_2) \Theta\left(z_2 > z_{\text{cut}}\right) \Theta\left(1 - z_2 > z_{\text{cut}}\right) \Theta\left(\theta_1^2 > \theta_2^2\right) \delta\left(\rho - z_2\theta_2^2\right). \\ \end{array}$$

$$= \int_{p_{t1}}^{p_{t2}} dp_{t,\text{jet}} \,\sigma_q(p_{t,\text{jet}}) R'_q \Big[-R_q - R_{q \to g} \Big] \qquad \textbf{p_T result and new piece}$$
$$- \int_{p_{t1}}^{\min\left[p_{t2}, \frac{p_{t1}}{1 - z_{\text{cut}}}\right]} dp_{t,\text{jet}} \,\sigma_q(p_{t,\text{jet}}) \,R'_q \,\frac{\alpha_s C_F}{\pi} \log \frac{1}{\rho} \int_{1 - \frac{p_{t1}}{p_{t,\text{jet}}}}^{z_{\text{cut}}} dz_1 \, p_{gq}(z_1).$$

SM, Schunk, Soyez (2017)

Phenomenology

SM, Schunk, Soyez (2017)

- mass distribution IRC safe in both cases
- however, resummation is different event at LL!

Phenomenology

SM, Schunk, Soyez (2017)

- mass distribution IRC safe in both cases
- however, resummation is different event at LL!

• Is $z_c = 0.1$: big or small ?

The prongs' momentum balance z_g

Momentum sharing z_g

- z_g not IRC safe because Born is ill-defined
- avoid singularity requiring opening angle

Sudakov safety

 $p(z_g) = \frac{1}{\sigma} \frac{d\sigma}{dz_g} = \int dr_g \, p(r_g) \, p(z_g | r_g)$ all-order distribution:
emissions at zero angle are
exponentially suppressed
finite conditional
probability for $r_g > 0$

If this procedure gives a finite result, z_g is said Sudakov safe

41

As β varies, we move from an IRC safe situation (β <0) to IRC unsafe (but Sudakov safe!) regime (β >0) Larkoski, Thaler (2013) Larkoski, SM, Thaler (2015)

remarkable result at $\beta=0$

exposes the QCD splitting function

$$\frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}z_g} = \frac{\overline{P}_i(z_g)}{\int_{z_{\mathrm{cut}}}^{1/2} \mathrm{d}z \,\overline{P}(z)} \Theta(z_g - z_{\mathrm{cut}}) + \mathcal{O}(\alpha_s)$$

Larkoski, SM, Thaler (2015) Larkoski, SM, Thaler, Tripathee, Xue (2017)

first research-level physics study that utilizes CMS Open Data

Tripathee, Xue, Larkoski, SM, Thaler (2017)

Heavy-ion applications

now used as a probe for medium induced modification in heavy ion collisions

 $\mathcal{P}_{i \to jl}(x, k_{\perp}) = \mathcal{P}_{i \to jl}^{vac}(x, k_{\perp}) + \mathcal{P}_{i \to jl}^{med}(x, k_{\perp})$

Summary

- Importance of substructure studies
- Soft drop: theoretical status and physics opportunities

Summary

- Importance of substructure studies
- Soft drop: theoretical status and physics opportunities
- Things I didn't have time to discuss:
 - Quark / gluOn discrimination
 Andersen et al. ``Les Houches 2015: Physics at TeV Colliders Standard Model Working Group Report", arXiv:1605.04692
 Gras et al. ``Systematics of quark/gluon tagging", arXiv:1704.03878
 Elder et al. ``Generalized Fragmentation Functions for Fractal Jet Observables", arXiv:1704.05456
 Frye et al. ``Casimir Meets Poisson: Improved Quark/Gluon Discrimination with Counting Observables", arXiv:1704.06266

(note that et al. always includes Jesse Thaler!)

- first-principle taggers: Salam, Schunk, Soyez ``Dichroic subjettiness ratios to distinguish colour flows in boosted boson tagging", <u>arXiv:1612.03917</u>
- machine learning (see Ben Nachman talk)

Jet substructure at LHC

ideas, phenomenology, MC simulations, *etc.*

more efficient

Jet substructure at LHC

deeper understanding QCD, calculations, etc.

ideas, phenomenology, MC simulations, *etc.*

more efficient

Thank you !