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Perspectives on This Talk

The Analyzer What tools do I need to set the best
limit?

The Provider How do I use the tools to perform the
model scan needed by the analysts?

The Developer How do I evolve my tool to enable the
provider? What are the priorities?

Do the tools limit the physics?
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My Outline and $0.02

Mechanics and details of what we do.

Results and comments on tuning.

Evolution of software and computing models.
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History of This Type of Talk

2006 Exhortation, LHC experimentalist generator wish list, precision on
backgrounds, benchmarks

2007 Repeat

2008 No such talk

2009 Extreme corners of phase space, rare backgrounds, new code is
hard – LHE is not, need specific models and new ideas

2010 No record of talk

2011 No workshop

2012 Fast detector simulations

2013 Simplified model scans, integrated infrastructure, Pythia8

2014 Results & input and interaction with MC and theory builders
essential

2015 RunI results confirmed MC tools. Generating BSM like SM.

2016 Results, MC4BSM 2026
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2026?: Schedule Reminder

Lead-time to produce billions of fully simulated
and reconstructed Monte Carlo events is long

Pythia-based production for Run 2 started in October 2014
LHE-based production started (late) in Feb. 2015

Inertia from experiments to change things like
tunes, pdf’s, etc (needs validation)

Inertia from developers to change things
(balancing problem)
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Introduction
Technical integration and workflows for generator tools in CMS

Understand how we use external generator
programs in CMS at both a physics and technical
level

Better understanding of our problems and
solutions (workflows)→ more effective use of
generators in CMS, suggestions for how we can
improve
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CMS Software Overview:CMSSW

Modular C++ application for GEN, SIM, RECO,
analysis

Steered with python-based configuration files

Consumes/produces root-based EDM files

Links directly to many externals – externally
maintained C, C++, fortran, or python software

External versions tied to CMSSW release
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CMS Production Overview: the Grid

Python-based tools manage large-scale
submission of CMSSW jobs to grid resources for
central production of Monte Carlo, data
processing, etc

Input and output are assumed to be EDM files
(with a few special cases)

Similar mechanisms for analysis

CMSSW software and externals available on
worker nodes through CVMFS (distributes
http-based read-only filesystem)
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CMSSW: Event Generation

Basic paradigm: A C++ module⇒ linked external generator code⇒
HepMC::GenEvent⇒ EDM output

Generator configuration controlled by CMSSW python configuration

Advantages:

Uniform configuration and IO mechanism (production tools only have to
deal with CMSSW)
No intermediate files needed (HepMC::GenEvent is passed along in
memory to standard CMSSW/root IO mechanisms or directly to GEANT,
which is also called from inside CMSSW)

Disadvantages:

Each generator needs a dedicated interface and must be packaged as a
CMSSW external
Initialization and event generation calls must be possible from within a
C++ application

Pythia, Herwig, Sherpa work nicely (some preference for C++)
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Example CMSSW GEN Configuration Fragment

import FWCore.ParameterSet.Config as cms

from Configuration.Generator.Pythia8CommonSettings_cfi import *
from Configuration.Generator.Pythia8CUEP8M1Settings_cfi import *

generator = cms.EDFilter("Pythia8GeneratorFilter",
maxEventsToPrint = cms.untracked.int32(1),
pythiaPylistVerbosity = cms.untracked.int32(1),
filterEfficiency = cms.untracked.double(1.0),
pythiaHepMCVerbosity = cms.untracked.bool(False),
comEnergy = cms.double(13000.0),

crossSection = cms.untracked.double(1.92043e+07),

PythiaParameters = cms.PSet(
pythia8CommonSettingsBlock,
pythia8CUEP8M1SettingsBlock,
processParameters = cms.vstring(
’HardQCD:all = on’,
’PhaseSpace:pTHatMin = 50 ’,
’PhaseSpace:pTHatMax = 80 ’,

),
parameterSets = cms.vstring(’pythia8CommonSettings’,

’pythia8CUEP8M1Settings’,
’processParameters’,
)

)
)
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CMS Software: LHE Input

CMS uses own LHE parser

LHE file can be read as input to a CMSSW job
and converted to C++ classes

LHE information passed to generator using its
hooks (e.g. Pythia8::LHAup)

generator LHE parsers not used

Advantage: Uniform hadronizer-independent
storage and access to lhe information

Disadvantage: We have to maintain our own
LHE parser
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LHE Input for Central Production

ascii LHE input not ideal
metadata not automatically available in data management system,
skipping of events is inefficient, etc

Can handle privately produced LHE files
user files⇒ eos⇒ EDM files containing the LHE products⇒
hadronization, simulation, etc)

Disk space, file corruption, etc, are major issues
when dealing with large sets of LHE files
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Central production of LHE events

Madgraph_aMC@NLO, POWHEG, etc don’t fit
our computing model

LHE generator code hard to include as an
external, since each process requires dedicated
(and sometimes dynamically generated) libraries

However, “externalLHEProducer” can read LHE
files into EDM products
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Solution: Gridpacks

Pre-generated/compiled code, and with initial phase space
integration results stored in a tarball

Gridpacks are put in CVMFS and accessed by remote jobs
(gridpack location is a configuration parameter of the
externalLHEProducer module)

Minimal and compact external input, and compressed EDM
output make very large scale LHE production possible.

CMS has produced over 30 billion LHE events (before matching)
through this mechanism for the initial Run 2 campaign

We maintain scripts for Madgraph_aMC@NLO (including NLO
processes), POWHEG, JHUGen to produce gridpack tarballs
based on the appropriate input cards
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Gridpack Considerations

Compiling code on batch workers is discouraged (should be
possible to fully precompile everything)

Long initialization time for event generation is discouraged
Gridpack size is an issue (> 500MB for the tarball or 5GB
decompressed)

For Madgraph_aMC@NLO we use lzma compression with very
large dictionaries because of large use of space from duplicated
code in statically linked executables for each subprocess

Gridpack generation step needs reliability and reasonable
run-time “as the physicist waits” (we can use multi-core machines
and/or condor/lsf batch queues to do the phase space integration,
but does no good if process is bottle-necked by single-threaded
steps, or individual long-running jobs)

Can we recycle “wrong” grids (e.g. 600 GeV gluino for 1 TeV)
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Parameter Scans

Typical case: gluino/squark pair production (+0,1,2 jets LO) in
MG5_aMC@NLO, decay in Pythia, steered by SLHA table

Produce one gridpack eg. for each gluino mass

Gridpack and pythia configuration+SLHA table for decays are
randomly selected for each luminosity section (∼ 200 events
after matching)

Resulting sample contains a mixture of all scan points

High granularity of randomization ensures missing events from
job failures are randomly and ∼ evenly distributed across scan
points
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process.generator = cms.EDFilter("Pythia8GeneratorFilter",
RandomizedParameters = cms.VPSet( (cms.PSet(

ConfigDescription = cms.string(’T1ggLL_600_1_1’),
ConfigWeight = cms.double(378.978723404),
GridpackPath = cms.string(’/cvmfs/cms.cern.ch/phys_generator/gridpacks/slc6_amd64_gcc481/13TeV/madgraph/V5_2.3.3/sus_sms/SMS-GlGl/SMS-GlGl_mGl-600_tarball.tar.xz’),
PythiaParameters = cms.PSet(

JetMatchingParameters = cms.vstring(’JetMatching:setMad = off’,
’JetMatching:scheme = 1’,
’JetMatching:merge = on’,
’JetMatching:jetAlgorithm = 2’,
’JetMatching:etaJetMax = 5.’,
’JetMatching:coneRadius = 1.’,
’JetMatching:slowJetPower = 1’,
’JetMatching:qCut = 118’,
’JetMatching:nQmatch = 5’,
’JetMatching:nJetMax = 2’,
’JetMatching:doShowerKt = off’,
’6:m0 = 172.5’,
’Check:abortIfVeto = on’),

parameterSets = cms.vstring(’pythia8CommonSettings’,
’pythia8CUEP8M1Settings’,
’JetMatchingParameters’),

pythia8CUEP8M1Settings = cms.vstring(’Tune:pp 14’,
’Tune:ee 7’,
’MultipartonInteractions:pT0Ref=2.4024’,
’MultipartonInteractions:ecmPow=0.25208’,
’MultipartonInteractions:expPow=1.6’),

pythia8CommonSettings = cms.vstring(’Tune:preferLHAPDF = 2’,
’Main:timesAllowErrors = 10000’,
’Check:epTolErr = 0.01’,
’Beams:setProductionScalesFromLHEF = off’,
’SLHA:keepSM = on’,
’SLHA:minMassSM = 1000.’,
’ParticleDecays:limitTau0 = on’,
’ParticleDecays:tau0Max = 10’,
’ParticleDecays:allowPhotonRadiation = on’,
’1000021:tau0 = 1.000000e+00’,
’ParticleDecays:tau0Max = 1000.1’,
’LesHouches:setLifetime = 2’,
’RHadrons:allow = on’)

),
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SLHATableForPythia8 = cms.string(’\nBLOCK MASS # Mass Spectrum\n
# PDG code mass particle\n 1000001 1.00000000E+05 # ~d_L\n
2000001 1.00000000E+05 # ~d_R\n 1000002 1.00000000E+05 # ~u_L\n
2000002 1.00000000E+05 # ~u_R\n 1000003 1.00000000E+05 # ~s_L\n
2000003 1.00000000E+05 # ~s_R\n 1000004 1.00000000E+05 # ~c_L\n
2000004 1.00000000E+05 # ~c_R\n 1000005 1.00000000E+05 # ~b_1\n
2000005 1.00000000E+05 # ~b_2\n 1000006 1.00000000E+05 # ~t_1\n
2000006 1.00000000E+05 # ~t_2\n 1000011 1.00000000E+05 # ~e_L\n
2000011 1.00000000E+05 # ~e_R\n 1000012 1.00000000E+05 # ~nu_eL\n
1000013 1.00000000E+05 # ~mu_L\n 2000013 1.00000000E+05 # ~mu_R\n
1000014 1.00000000E+05 # ~nu_muL\n 1000015 1.00000000E+05 # ~tau_1\n
2000015 1.00000000E+05 # ~tau_2\n 1000016 1.00000000E+05 # ~nu_tauL\n
1000021 6.000000e+02 # ~g\n 1000022 1.000000e+00 # ~chi_10\n 1000023
1.00000000E+05 # ~chi_20\n 1000025 1.00000000E+05 # ~chi_30\n 1000035
1.00000000E+05 # ~chi_40\n 1000024 1.00000000E+05 # ~chi_1+\n 1000037
1.00000000E+05 # ~chi_2+\n\n# DECAY TABLE\n# PDG Width\nDECAY 1000001
0.00000000E+00 # sdown_L decays\nDECAY 2000001 0.00000000E+00 #
sdown_R decays\nDECAY 1000002 0.00000000E+00 # sup_L decays\nDECAY
2000002 0.00000000E+00 # sup_R decays\nDECAY 1000003 0.00000000E+00 #
sstrange_L decays\nDECAY 2000003 0.00000000E+00 # sstrange_R
decays\nDECAY 1000004 0.00000000E+00 # scharm_L decays\nDECAY 2000004
0.00000000E+00 # scharm_R decays\nDECAY 1000005 0.00000000E+00 #
sbottom1 decays\nDECAY 2000005 0.00000000E+00 # sbottom2 decays\nDECAY
1000006 0.00000000E+00 # stop1 decays\nDECAY 2000006 0.00000000E+00 #
stop2 decays\n\nDECAY 1000011 0.00000000E+00 # selectron_L
decays\nDECAY 2000011 0.00000000E+00 # selectron_R decays\nDECAY
1000012 0.00000000E+00 # snu_elL decays\nDECAY 1000013 0.00000000E+00
# smuon_L decays\nDECAY 2000013 0.00000000E+00 # smuon_R decays\nDECAY
1000014 0.00000000E+00 # snu_muL decays\nDECAY 1000015 0.00000000E+00
# stau_1 decays\nDECAY 2000015 0.00000000E+00 # stau_2 decays\nDECAY
1000016 0.00000000E+00 # snu_tauL decays\n##### gluino decays - no
offshell decays needed\nDECAY 1000021 1.973270e-13 # gluino decays\n#
BR NDA ID1 ID2\n1.00000E+00 2 1000022 21\n\nDECAY 1000022
0.00000000E+00 # neutralino1 decays\nDECAY 1000023 0.00000000E+00 #
neutralino2 decays\nDECAY 1000024 0.00000000E+00 # chargino1+
decays\nDECAY 1000025 0.00000000E+00 # neutralino3 decays\nDECAY
1000035 0.00000000E+00 # neutralino4 decays\nDECAY 1000037
0.00000000E+00 # chargino2+ decays\n’) ),
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Standard Configurations for CMS Monte Carlo

Run1

Pythia6 standalone, Madgraph5+Pythia6 with/without MLM
matching, POWHEG+Pythia6, little bit of Sherpa 1.x and Herwig6

Run2

Pythia8 Standalone
Mainly for QCD, especially with additional generator level filters
(“multiple hadronization” feature has been added)
some more exotic BSM

POWHEG-BOX + Pythia8 (power showers with emission veto)
Mostly for Higgs signals, diboson production, and t t̄ production
Starting MINLO and NNLOPS
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Standard Configurations for CMS Monte Carlo

Run2 (cont)

MG5_aMC@NLO + Pythia8
LO without matching for many exotic BSM signal samples
LO with MLM matching (up to 4 additional partons depending on
process) used for boosted/multijet phase space for search
backgrounds with W/Z/γ+jets, QCD multijet, t t̄+jets, and for SUSY
signal samples
NLO (without merging) used for a few complex processes where
extra jets are either computationally expensive (ttW/Z/γ, ttbb, etc),
or not possible with FXFX (γ+jets, dijets, VBF, etc)
NLO with FXFX merging (up to 2 additional partons at NLO) used
for Z/W+jets, dibosons, t t̄ , some Higgs signals
CKKW/UMEPS/UNLOPS have technical problems with combining
samples (solved now) and weights (maybe solved now also at
least for LO CKKW?)
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Additional Configurations for CMS Run 2 Monte Carlo

Sherpa 2.X used for some samples (especially diphoton+jets)

POWHEG+Herwig++ (wimpy showers) used for systematics vs
Pythia8

MG5_aMC@NLO+Herwig++ (no merging)

Herwig++ standalone used for QCD and MinBias

Herwig7 integration in progress

JHUGen for anomalous Higgs spin/parity studies, H→ VV decays

Several other generators used for special samples
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Standard Configurations for CMS Run2
Pythia8 Tune

So far have used Tune CUETP8M1 for most samples
(arXiv:1512.00815)

Re-tuning of UE parameters on top of Monash, αS and other
shower parameters left untouched
In particular this means αS=0.1365 used for both ISR and FSR in
the shower, despite using 0.118 in the ME for NLO samples and
0.130 for LO samples

Tuning of shower parameters in particular being revisited in future
production

22 / 32



CMSCMS

Pythia8 Shower Tuning with t t̄ (CMS-PAS-TOP-16-021)

Differences observed between generators, and sensitivity to shower αs in t t̄
production in kinematics/multiplicity of additional jets

Retune PS ISR αs and POWHEG hdamp using POWHEG+Pythia t t̄ vs

dilepton+jets data, yields (much) lower value of αISR
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Pythia8 Shower Tuning with t t̄ (CMS-PAS-TOP-16-021)

Smaller αISR
s somewhat favoured for MG5_aMC@NLO+Pythia8 with FXFX

merging, but uncertainties are large

More systematic cross comparison of total uncertainty between generators
would be useful (GEN-17-001 in prep)

Impact of shower starting scale in mc@NLO configurations?
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Evolution and Revolution in Computing

MG use of directories as a database is a
bottleneck. Unpacking the tarball does not scale
(overcome by NOT unpacking?)

Codes will necessarily need to be multi-threaded
or suffer a performance penalty

Finding applications for GPUs would be nice
(also, CUDA code can be readily adapted to
OpenMP)
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Phase space integration is a bottle neck
(gridpacks are not made on the grid – but testing
HTCondor, CMS Connect, MPI, NERSC): New
algorithims or multi-threading?

Models can be passed between tools. Can
runtime configurations (process, cuts, scales, ...)?

Machine Learning (and custom FPGAs) is all the
rage. Is there any overlap? Is making a VEGAS
grid similar to fitting the sigmoid functions
between NN layers?
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More, Better, Faster Tuning

families of tunes corresponding to “an error band”

non–global tunes focused on “physics windows” –
can indicate whether certain parameters are
reasonably universal

include PDF families

MG+Pythia (Pythia alone will fit deficiencies in its
perturbative model with parameters in the
non-perturbative models)
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improve the tuning procedure – different
surrogate models, eye to parallel processing,
adaptive fits, ...

tuning without unfolding – regions that are more
interesting to searches for new physics, including
extreme regions of phase space and regions that
are sensitive to the detector response
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Potentially useful Folded data
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Conclusions & $0.02

The mechanics and details of what we do. Will
this scale? Could it be done better?

Comments on tuning. Will this scale? Could it be
done better?

Evolution of software and computing models.
LHE codes are not written for how the
experiments use them. There is inertia to change.
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Standard Configurations for CMS Run2: PDF’s

Standardized on NNPDF30+uncertainties so far for most
samples, using appropriate LO, NLO, 4fs and 5fs variations

Additional weights for variations of central pdf+αS included for
∼all POWHEG and MG5_aMC@NLO samples

Additional weights for alternate pdfs+uncertainties included for
POWHEG, and LO MG5_aMC@NLO (was not previously
possible at NLO, will be included in future productions)

(Pythia8-only samples used NNPDF23LO1 and no variations)

Central and alternate PDF sets will be updated for 2017
production
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