NLO+PS matching and perspectives for NLO PS

Sebastian Sapeta

IFJ PAN Kraków

in collaboration with: S. Jadach, G. Nail, W. Płaczek, A. Siódmok and M. Skrzypek

mostly based on: JHEP 1510 (2015) 052, Eur.Phys.J. C76 (2016) no.12, 649, Eur.Phys.J. C77 (2017) no.3, 164

MC4BSM, SLAC, 13 May 2017

Big goal

Big goal

Big goal

Outline and motivation

1. A method of NLO+PS matching applied to Drell-Yan and Higgs production

Outline and motivation

1. A method of NLO+PS matching applied to Drell-Yan and Higgs production

Key ingredients:

- new factorization scheme leading to new PDFs
- NLO correction applied to PS via reweighting of MC events

Outline and motivation

1. A method of NLO+PS matching applied to Drell-Yan and Higgs production

Key ingredients:

- new factorization scheme leading to new PDFs
- NLO correction applied to PS via reweighting of MC events

Why do we develop a new method?

- By departing from MS, the NLO+PS matching becomes very simple → just multiplying by a positive MC weight.
- If it is so simple at NLO+LO PS, there is a hope that pushing it to NNLO+NLO PS will be possible.

2. Status of the NLO parton shower development

Benefits of matching fixed order results with parton shower

PS gives correct behaviour at low p_T and only approximate at high p_T . The production of a gluon with p_{Tg} is given by

$$d\sigma_1^{\mathsf{PS}} = B \cdot K(p_{\mathsf{Tg}}) \, \Delta(Q, p_{\mathsf{Tg}}) \, d\phi_B d\phi_1$$

where $B \cdot K \simeq R$ and the Sudakov $\Delta(Q, p_{Tg})$ suppresses emissions between scales Qand p_{Tg} .

LO+PS can be achieved by upgrading $B \cdot K$ to the exact R

 $d\sigma_1^{\rm LO+PS} = R(p_{Tg})\Delta(Q, p_{Tg}) \, d\phi_B d\phi_1$

Upgrade to NLO + PS

Naive addition of PS on top of a NLO event leads to double counting since PS will generate contributions already present at NLO!

Upgrade to NLO + PS

Naive addition of PS on top of a NLO event leads to double counting since PS will generate contributions already present at NLO!

- MC@NLO [Frixione & Webber '02] and POWHEG [Nason '04]
 - Generate the hardest radiation based on the NLO cross section adjusted for subsequent shower emissions.
 - Pass the event to parton shower and let it produce further emissions.

Upgrade to NLO + PS

Naive addition of PS on top of a NLO event leads to double counting since PS will generate contributions already present at NLO!

- MC@NLO [Frixione & Webber '02] and POWHEG [Nason '04]
 - Generate the hardest radiation based on the NLO cross section adjusted for subsequent shower emissions.
 - Pass the event to parton shower and let it produce further emissions.
- KrkNLO [Jadach, Kusina, Płaczek, Skrzypek & Sławińska '13; Jadach, Płaczek, Sapeta, Siódmok & Skrzypek '15 – '17]
 - Run PS in a standard way.
 - Reweight the event with real×virtual NLO correction.
 - Redefine PDFs to account for "collinear" part of the NLO contribution.

Sebastian Sapeta (IFJ PAN Kraków)

NLO+PS matching and perspectives for NLO PS

The KrkNLO method

Production of a colour-neutral object

Sudakov variables:

$$\alpha = \frac{2k \cdot p_B}{s} = \frac{2k^+}{\sqrt{s}} \qquad z = 1 - \alpha - \beta$$

$$\beta = \frac{2k \cdot p_F}{s} = \frac{2k^-}{\sqrt{s}} \qquad y = \frac{1}{2} \ln \frac{\alpha}{\beta}$$

Important subtlety

NLO cross section in $\overline{\text{MS}}$ factorization scheme (DY in $q\bar{q}$ channel)

$$d\sigma_{\mathsf{DY}}^{\alpha_s} = \sigma_{\mathsf{DY}}^{\mathcal{B}} f_q^{\overline{\mathsf{MS}}}(x_1, \hat{s}) \otimes \frac{\alpha_s}{2\pi} C_{q\bar{q}}^{\overline{\mathrm{MS}}}(z) \otimes f_{\bar{q}}^{\overline{\mathrm{MS}}}(x_2, \hat{s})$$

where

$$C_{q\bar{q}}^{\overline{\rm MS}}(z) = C_F\left[4(1+z^2)\left(\frac{\ln(1-z)}{1-z}\right)_+ -2\frac{1+z^2}{1-z}\ln z + \delta(1-z)\left(\frac{2}{3}\pi^2 - 8\right)\right].$$

Important subtlety

NLO cross section in \overline{MS} factorization scheme (DY in $q\bar{q}$ channel)

$$d\sigma_{\mathsf{DY}}^{\alpha_s} = \sigma_{\mathsf{DY}}^{\mathcal{B}} f_q^{\overline{\mathsf{MS}}}(x_1, \hat{s}) \otimes \frac{\alpha_s}{2\pi} C_{q\bar{q}}^{\overline{\mathrm{MS}}}(z) \otimes f_{\bar{q}}^{\overline{\mathrm{MS}}}(x_2, \hat{s})$$

where

$$C_{q\bar{q}}^{\overline{\text{MS}}}(z) = C_{F} \left[4(1+z^{2}) \left(\frac{\ln(1-z)}{1-z} \right)_{+} - 2\frac{1+z^{2}}{1-z} \ln z + \delta(1-z) \left(\frac{2}{3}\pi^{2} - 8 \right) \right]$$

We want to reproduce this with Monte Carlo, in a fully exclusive way.

Important subtlety

NLO cross section in $\overline{\text{MS}}$ factorization scheme (DY in $q\bar{q}$ channel)

$$d\sigma^{lpha_s}_{\mathsf{DY}} \;\;=\;\; \sigma^{\mathcal{B}}_{\mathsf{DY}} \, f^{\overline{\mathrm{MS}}}_q(x_1,\hat{s}) \otimes rac{lpha_s}{2\pi} \mathcal{C}^{\overline{\mathrm{MS}}}_{qar{q}}(z) \otimes f^{\overline{\mathrm{MS}}}_{ar{q}}(x_2,\hat{s}) \,,$$

where

$$C_{q\bar{q}}^{\overline{\text{MS}}}(z) = C_{F} \left[4(1+z^{2}) \left(\frac{\ln(1-z)}{1-z} \right)_{+} - 2\frac{1+z^{2}}{1-z} \ln z + \delta(1-z) \left(\frac{2}{3}\pi^{2} - 8 \right) \right]$$

We want to reproduce this with Monte Carlo, in a fully exclusive way.

If we use $\overline{\text{MS}}$ PDFs, we need to generate terms like $\sim \left(\frac{\ln(1-z)}{1-z}\right)_+$ which are technical artefacts of $\overline{\text{MS}}$ scheme (coming from ϵ/ϵ contributions).

If we think of a parton shower as a procedure that unfolds PDFs, then, obviously, these are not MS PDFs!

The KrkNLO method

Two essential elements

1. Change the factorization scheme from $\overline{\text{MS}}$ to MC

- produce new MC PDFs
- differences at LO
- universality: recovering MS NLO result

2. Reweight parton shower

- correct hardest emission by "real" weight
- upgrade the cross section/distributions to NLO by multiplicative, constant "virtual" weight

The KrkNLO method

Two essential elements

1. Change the factorization scheme from $\overline{\text{MS}}$ to MC

- produce new MC PDFs
- differences at LO
- universality: recovering MS NLO result

2. Reweight parton shower

- correct hardest emission by "real" weight
- upgrade the cross section/distributions to NLO by multiplicative, constant "virtual" weight

Practical implementation for the CS shower

Implemented in Sherpa/Herwig 7 with the Catani-Seymour (CS) shower.

- \hookrightarrow available in the new H7 release; http://krknlo.hepforge.org
- The CS shower covers the entire space of (α, β) .
- The evolution variable is: $q^2 \simeq \alpha \beta s = k_T^2$.
- Transformation of PDFs (example for $q\bar{q}$ channel)

$$\begin{array}{ll} C_{q\bar{q}}^{\overline{\mathrm{MS}}} &= \rho_{q\bar{q}}^{\mathrm{NLO}} - \Gamma_{q\bar{q}}^{\overline{\mathrm{MS}}} \\ C_{q\bar{q}}^{\mathrm{MC}} &= \rho_{q\bar{q}}^{\mathrm{NLO}} - \Gamma_{q\bar{q}}^{\mathrm{MC}} \end{array} \Rightarrow \quad \mathcal{K}_{q\bar{q}}^{\mathrm{MC}} = C_{q\bar{q}}^{\overline{\mathrm{MS}}} - C_{q\bar{q}}^{\mathrm{MC}} \end{array}$$

which gives

$$q_{\rm MC}(x,Q^2) = q_{\rm \overline{MS}}(x,Q^2) + \int_x^1 \frac{dz}{z} q_{\rm \overline{MS}}\left(\frac{x}{z},Q^2\right) K_{qq}^{\rm MC}(z)$$

- Virtual correction applied multiplicatively.
- ► The hardest real emission is upgraded to ME by reweighting.

PDFs in MC scheme

Definition of LO PDFs in MC factorization scheme

Rotation in flavour space:

$$\begin{bmatrix} q(x,Q^2)\\ \bar{q}(x,Q^2)\\ g(x,Q^2) \end{bmatrix}_{\mathsf{MC}} = \begin{bmatrix} q\\ \bar{q}\\ g \end{bmatrix}_{\overline{\mathsf{MS}}} + \frac{\alpha_s}{2\pi} \int \frac{dz}{z} \begin{bmatrix} \mathcal{K}_{qq}^{\mathsf{MC}}(z) & 0 & \mathcal{K}_{qg}^{\mathsf{MC}}(z)\\ 0 & \mathcal{K}_{\bar{q}\bar{q}}^{\mathsf{MC}}(z) & \mathcal{K}_{\bar{q}g}^{\mathsf{MC}}(z) \end{bmatrix} \begin{bmatrix} q(\frac{x}{z},Q^2)\\ \bar{q}(\frac{x}{z},Q^2)\\ g(\frac{x}{z},Q^2) \end{bmatrix}_{\overline{\mathsf{MS}}}$$

where

$$\begin{split} \mathcal{K}_{gq}^{\text{MC}}(z) &= C_F \left\{ \frac{1 + (1 - z)^2}{z} \ln \frac{(1 - z)^2}{z} + z \right\} \\ \mathcal{K}_{gg}^{\text{MC}}(z) &= C_A \left\{ 4 \left[\frac{\ln(1 - z)}{1 - z} \right]_+ + 2 \left[\frac{1}{z} - 2 + z(1 - z) \right] \ln \frac{(1 - z)^2}{z} - 2 \frac{\ln z}{1 - z} \right. \\ &- \delta(1 - z) \left(\frac{\pi^2}{3} + \frac{341}{72} - \frac{59}{36} \frac{T_f}{C_A} \right) \right\} \\ \mathcal{K}_{qq}^{\text{MC}}(z) &= C_F \left\{ 4 \left[\frac{\ln(1 - z)}{1 - z} \right]_+ - (1 + z) \ln \frac{(1 - z)^2}{z} - 2 \frac{\ln z}{1 - z} + 1 - z - \delta(1 - z) \left(\frac{\pi^2}{3} + \frac{17}{4} \right) \right\} \\ \mathcal{K}_{qg}^{\text{MC}}(z) &= T_R \left\{ \left[z^2 + (1 - z)^2 \right] \ln \frac{(1 - z)^2}{z} + 2z(1 - z) \right\} \end{split}$$

Sebastian Sapeta (IFJ PAN Kraków)

NLO+PS matching and perspectives for NLO PS

MC PDFs

- ▶ More gluons and less quarks at low *x*: momentum sum rules preserved!
- We checked directly the scheme independence of NLO cross sections!

Differences between $\overline{\text{MS}}$ PDF sets carry on to MC PDFs

Sebastian Sapeta (IFJ PAN Kraków)

NLO+PS matching and perspectives for NLO PS

Reweighting the parton shower

$$\sigma^{\mathsf{LO}} = \sigma_B \otimes f_{\oplus}(Q^2, x_{\oplus}) \otimes f_{\ominus}(Q^2, x_{\ominus})$$

$$\begin{split} \sigma_{1+}^{\mathsf{PS}} &= \sigma_B \otimes f_{\oplus}(Q^2, x_{\oplus}) \otimes f_{\ominus}(Q^2, x_{\ominus}) \\ &\otimes \Big\{ S_{\oplus}(q_1^2, Q^2) \mathcal{K}_{\oplus}(q_1^2, z_1) S_{\ominus}(q_1^2, Q^2) + S_{\ominus}(q_1^2, Q^2) \mathcal{K}_{\ominus}(q_1^2, z_1) S_{\oplus}(q_1^2, Q^2) \Big\} \end{split}$$

$$\begin{split} \sigma_{2+}^{\mathsf{PS}} &= \sigma_B \otimes f_{\oplus}(Q^2, x_{\oplus}) \otimes f_{\ominus}(Q^2, x_{\ominus}) \\ \otimes \Big\{ S_{\oplus}(q_1^2, Q^2) \mathcal{K}_{\oplus}(q_1^2, z_1) S_{\ominus}(q_1^2, Q^2) \\ &\otimes \Big\{ S_{\oplus}(q_2^2, q_1^2) \mathcal{K}_{\oplus}(q_2^2, z_2) S_{\ominus}(q_2^2, q_1^2) + S_{\oplus}(q_2^2, q_1^2) \mathcal{K}_{\ominus}(q_2^2, z_2) S_{\ominus}(q_2^2, q_1^2) \Big\} \\ &+ S_{\ominus}(q_1^2, Q^2) \otimes \mathcal{K}_{\ominus}(q_1^2, z_1) \otimes S_{\oplus}(q_1^2, Q^2) \\ &\otimes \Big\{ S_{\oplus}(q_2^2, q_1^2) \mathcal{K}_{\oplus}(q_2^2, z_2) S_{\ominus}(q_2^2, q_1^2) + S_{\oplus}(q_2^2, q_1^2) \mathcal{K}_{\ominus}(q_2^2, z_2) S_{\ominus}(q_2^2, q_1^2) \Big\} \Big\} \end{split}$$

$$\begin{split} \sigma_{2+}^{\mathsf{NLO}+\mathsf{PS}} &= \sigma_B \, (1+V) \otimes f_{\oplus}(Q^2, x_{\oplus}) \otimes f_{\ominus}(Q^2, x_{\ominus}) \\ &\otimes \Big\{ S_{\oplus}(q_1^2, Q^2) \mathcal{K}_{\oplus}(q_1^2, z_1) S_{\ominus}(q_1^2, Q^2) \, \mathcal{R}_{\oplus}(q_1^2, z_1) / \mathcal{K}_{\oplus}(q_1^2, z_1) \\ &\otimes \Big\{ S_{\oplus}(q_2^2, q_1^2) \mathcal{K}_{\oplus}(q_2^2, z_2) S_{\ominus}(q_2^2, q_1^2) + S_{\oplus}(q_2^2, q_1^2) \mathcal{K}_{\ominus}(q_2^2, z_2) S_{\ominus}(q_2^2, q_1^2) \\ &+ S_{\ominus}(q_1^2, Q^2) \otimes \mathcal{K}_{\ominus}(q_1^2, z_1) \otimes S_{\oplus}(q_1^2, Q^2) \, \mathcal{R}_{\ominus}(q_1^2, z_1) / \mathcal{K}_{\ominus}(q_1^2, z_1) \\ &\otimes \Big\{ S_{\oplus}(q_2^2, q_1^2) \mathcal{K}_{\oplus}(q_2^2, z_2) S_{\ominus}(q_2^2, q_1^2) + S_{\oplus}(q_2^2, q_1^2) \mathcal{K}_{\ominus}(q_2^2, z_2) S_{\ominus}(q_2^2, q_1^2) \Big\} \Big\} \end{split}$$

The MC weights

Real:

$$W_{R}^{q\bar{q}} = 1 - \frac{2\alpha\beta}{1+z^{2}} \qquad \qquad W_{R}^{qg} = 1 + \frac{\beta(\beta+2z)}{(1-z)^{2}+z^{2}}$$
$$W_{R}^{gg} = \frac{1+z^{4}+\alpha^{4}+\beta^{4}}{1+z^{4}+(1-z)^{4}} \qquad \qquad W_{R}^{gq} = \frac{1+\beta^{2}}{1+(1-z)^{2}}$$

Virtual:

$$W_{V}^{q\bar{q}} = \frac{\alpha_{s}}{2\pi} C_{F} \left[\frac{4}{3} \pi^{2} + \frac{1}{2} \right] \qquad \qquad W_{V}^{qg} = 0$$
$$W_{V}^{gg} = \frac{\alpha_{s}}{2\pi} C_{A} \left[\frac{4}{3} \pi^{2} + \frac{473}{36} + \frac{59}{18} \frac{T_{f}}{C_{A}} \right] \qquad \qquad W_{V}^{gq} = 0$$

- Real weights are simple functions of kinematic variables One can compute them on the fly, inside MC, or outside, using information from event record.
- Virtual+soft weights are constant

Results: Drell-Yan

Drell-Yan: calculational setup

KrkNLO

- $\blacktriangleright \ \mu_F^2 = m_Z^2$
- Virtual: $\mu_R^2 = m_Z^2$
- Real: two choices

$$\mu_R^2 = m_Z^2$$

▶ $\mu_R^2 = q^2$, where $q \simeq k_T$ is the PS evolution variable

 $\,\hookrightarrow\,$ differences formally beyond NLO, indicative of missing higher orders

Compared to:

- **MCFM**: pure NLO, $\mu_F^2 = \mu_R^2 = m_Z^2$
- **MC@NLO**: from Sherpa/Herwig 7, with the evolution var. $q^2 \simeq k_T^2$
- **POWHEG**: from Herwig 7 with the evolution variable k_T^2
- **DYNNLO**: pure NNLO, $\mu_F^2 = \mu_R^2 = m_Z^2$

Drell-Yan: Matched results, botch channels, 1st emission

• Moderate differences between KrkNLO $\alpha_s(q^2)$ and MC@NLO in the region below M_Z and between KrkNLO $\alpha_s(M_Z^2)$ and MC@NLO in the region above M_Z

Drell-Yan: Matched results, both channels, full PS

8 TeV: qq and qg channels (full parton shower)

• KrkNLO $\alpha_s(q^2)$ stays overall very close to MC@NLO

• KrkNLO $\alpha_s(q^2)$ almost coincides with POWHEG $p_{T,Z}$ distributions

Sebastian Sapeta (IFJ PAN Kraków)

NLO+PS matching and perspectives for NLO PS

Drell-Yan: Comparison to NNLO

- ▶ KrkNLO with $\alpha_s(\min(q^2, M_z^2))$ nicely follows full NNLO at high $p_{T,Z}$
- ▶ the fact that the KrkNLO result is higher than NLO comes from partial accounting for $\mathcal{O}(\alpha_s^2)$ terms, those introduced by the multiplicative correction to the parton shower $R \otimes V$

Results: Higgs from gluon fusion

Higgs from gluon fusion: calculational setup

- heavy top effective vertex, $m_t \rightarrow \infty$
- ▶ √s = 8 TeV
- fully inclusive
- stable Higgs
- virtual part: $\mu_R^2 = m_H^2$
- real part: $\mu_R = \min(q^2, m_H^2)$

Comparisons to:

- MC@NLO
- POWHEG
 - default: p_T of PS emissions $< \mu_F$
 - original: no restriction on p_T of PS emissions
- HNNLO: fixed order result

Total cross section

	MC@NLO	POWHEG		KrkNLO	HNNLO
		Default	Original		(NLO)
$\sigma_{\rm tot} \; [{\rm pb}]$	12.700 (2)	12.699 (2)	12.697 (2)	12.939 (2)	12.640(1)

Total cross section for Higgs production via gluon-fusion

 \hookrightarrow 2% differences w.r.t. MC@NLO/POWHEG: $R \otimes V$ terms and $\overline{\text{MS}} \rightarrow \text{MC}$ PDF transformation

Higgs transverse momentum distributions

• similar results for all predictions in the range $5 \text{ GeV} < p_T < 100 \text{ GeV}$

- ▶ for $p_T > 100 \text{ GeV}$: KrkNLO differs from MC@NLO/Powheg (default), as, in the latter, PS emissions are restricted by $p_T < m_H$
- no such restriction in Powheg (orig), hence, this result is close to KrkNLO

Comparison to NNLO

► KrkNLO nicely follows full NNLO at high p^H_T; partial accounting for NNLO terms through R ⊗ V corrections applied to the parton shower

Comparison to data [8 TeV, ATLAS]

 \blacktriangleright contributions from other channels, XH, added; account for $\sim 12\%$ of the x-sec.

- all predictions compatible and undershoot the data (PDF uncert. negligible)
- experimental uncertainties still very large

Perspectives for NLO PS

LO ladder

$$\bar{D}^{LO}(x,Q) = \sum_{n=0}^{\infty} \left| \begin{array}{c} \sum_{i=1}^{n-1} \\ \sum_{i=1}^{n-1} \\ \sum_{i=1}^{n-1} \end{array} \right|^{2} = e^{-S} \sum_{i=1}^{\infty} \prod_{i=1}^{n} \frac{d^{3}k_{i}}{k_{i}^{0}} \theta_{Q > a_{i} > a_{i-1}} \rho_{1}^{(0)}(k_{i})$$

where

$$\rho_1^{(0)}(k_i) = \frac{2C_F^2 \alpha_s}{\pi} \frac{1}{k_i^{T2}} \frac{1+z^2}{2}$$

NLO ladder

NLO ladder

The exclusive, NLO weights read

$$\beta_0^{(1)} = \frac{\left| \frac{1}{1 + \dots} \right|^2}{\left| \frac{1}{1 + \dots} \right|^2} = 1 + 2\Re(\Delta_{\scriptscriptstyle ISR}^{(1)})$$

Status of NLO PS

 NLO kernels recalculated in exclusive form and cross-checked against the inclusive kernels of Curci, Furmanski, Petronzio [arXiv:1102.5083, 1401.1587, 1606.01238]

Proof of concept

 numerical comparison of toy PDFs from inclusive and exclusive DGLAP evolution

Next step

apply the same strategy as for NLO+PS matching

existing solution for toy PS \longrightarrow realistic PS

 \hookrightarrow Recent Development in the framework of DIRE shower

[Höche, Krauss, Prestel '17]

Conclusions

- KrkNLO: a method of NLO+PS matching:
 - ► Real emissions are corrected by simple reweighting.
 - Collinear terms are dealt with by putting them to PDFs. This amounts to change of factorization scheme from MS to MC.
 - Virtual correction is just a constant and does not depend on Born kinematics.
- The method has been implemented for Drell-Yan and Higgs production on top of Catani-Seymour shower in Sherpa 2.0 and Herwig 7 event generators.
- Comparisons to MCFM, DYNNLO, HNNLO, MC@NLO, POWHEG.
- The results of KrkNLO matching procedure at NLO+LL level come out consistent with fixed order NLO and other matching methods.
- ▶ Tails of distributions of $p_{T,Z}$ and $p_{T,H}$ close to NNLO.
- Proof of concept of NLO PS exists. Transferring that to a real-life PS is our next objective.

BACKUP

Fixed order calculations in QCD

General structure of NLO cross sections:

$$d\sigma = \left[B + V(\alpha_s) + C(\alpha_s)\right] d\phi_B + R(\alpha_s) d\phi_B d\phi_1$$

- B, R, V Born, real and virtual part
- C collinear subtraction counterterm (for initial state radiation case)

Calculation possible e.g. by means of subtraction procedure

$$d\sigma = \left[B + V(\alpha_s) + \int_1 A(\alpha_s) d\phi_1 + C(\alpha_s)\right] d\phi_B + \int_1 \left[R(\alpha_s) - A(\alpha_s)\right] d\phi_1 d\phi_B,$$

where $A \simeq R$, such that it reproduces collinear and soft singularities.

► Good for inclusive observables or distributions at high-*p*_T.

Parton shower

In the collinear region, fixed order calculation becomes unreliable because each α_s^n is accompanied by a large, logarithmic coefficient, \ln^n , and

$$\left(lpha_{s}\ln
ight) ^{n}\sim1$$
 for all n .

These terms must be summed to all orders and this is what the Parton Shower (PS) is aiming at. In the collinear limit

$$d\sigma_{n+1} \simeq d\sigma_n rac{lpha_s(q^2)}{2\pi} rac{dq^2}{q^2} P(z) dz$$
 .

This can be iterated and used to resum all leading log contributions. In particular, non-emission probability (Sudakov form factor) is given by

$$\Delta(q_1,q_2) = \exp\left[-\int_{q_1}^{q_2} \frac{\alpha_s(q^2)}{2\pi} \frac{dq^2}{q^2} \int_{z_0}^{1} P(z) dz\right].$$

In Monte Carlo event generators, the scale of ith emission, q_i , is found by solving $A(q_i - q_i) = P$

$$\Delta(q_{i-1},q_i)=R_i\,,$$

where $R_i \in [0, 1]$ is a random number and q_{i-1} is a scale of previous emission.

Origin of $4\frac{\ln(1-z)}{1-z}$ in \overline{MS}

Origin of $4\frac{\ln(1-z)}{1-z}$ in \overline{MS}

Origin of $4\frac{\ln(1-z)}{1-z}$ in \overline{MS}

Could we reorganize phase space integration to remove the oversubtraction?

Could the change of factorization scheme help us to simplify $\mathsf{NLO}\mathsf{+}\mathsf{PS}$ matching?

Implementation on top of the Catani-Seymour shower

 \hookrightarrow We used Sherpa 2.0.0 implementation of the CS shower.

Phase space measure of emitted gluon

$$rac{dlpha}{lpha}rac{deta}{eta}=rac{dlpha deta}{eta(lpha+eta)}+rac{dlpha deta}{lpha(lpha+eta)}$$

The evolution variable:

$$q_{_{\!F}}^2 = s(\alpha + \beta)\beta, \qquad \qquad q_{_{\!B}}^2 = s(\alpha + \beta)\alpha,$$

hence

$$\frac{d\alpha d\beta}{\alpha\beta} = \frac{dq_{\scriptscriptstyle F}^2}{q_{\scriptscriptstyle F}^2} \frac{dz}{1-z} + \frac{dq_{\scriptscriptstyle B}^2}{q_{\scriptscriptstyle B}^2} \frac{dz}{1-z}$$

• The CS shower covers all space of (α, β) .

Implementation on top of the Catani-Seymour shower

 \hookrightarrow It turns out that coefficient functions of the CS shower equal to those from the MC scheme of Jadach et al. arXiv:1103.5015. Hence, CS \equiv MC.

The $C_2(z)$ function:

$$C_2^{\rm MC}(z)\Big|_{\rm real} = \int (R-K)$$

For the $q\bar{q}$ channel:

$$C_{2q}^{\mathsf{MC}}(z)\Big|_{\mathsf{real}} = rac{lpha_s}{2\pi} C_F \left[-2(1-z)
ight]$$

▶ For the *qg* channel:

$$C_{2g}^{MC}(z)\Big|_{real} = \frac{\alpha_s}{2\pi} T_R \frac{1}{2}(1-z)(1+3z)$$

- Quark and anti-quark PDFs are redefined by:
 - subtracting $C_{2q}^{MC}(z)$ and $C_{2g}^{MC}(z)$ from \overline{MS} PDFs
 - absorbing all z-dependent terms from MS coefficient functions

The virtual correction:

$$C_{2q}\Big|_{\operatorname{virt}} = \delta(1-z)\left(rac{4}{3}\pi^2 - rac{5}{2}
ight)$$

is applied multiplicatively.

Implementation on top of the Catani-Seymour shower

 \hookrightarrow It turns out that coefficient functions of the CS shower equal to those from the MC scheme of Jadach et al. arXiv:1103.5015. Hence, CS \equiv MC.

The $C_2(z)$ function:

$$C_2^{\rm MC}(z)\Big|_{\rm real} = \int (R-K)$$

For the $q\bar{q}$ channel:

 $C_{2q}^{\mathrm{MC}}(z)\Big|_{\mathrm{real}} = \frac{\alpha_{\mathrm{s}}}{2\pi}C_{\mathrm{F}}\left[-2(1-z)\right]$

▶ For the *qg* channel:

$$C_{2g}^{\mathsf{MC}}(z)\Big|_{\mathsf{real}} = \frac{\alpha_s}{2\pi} T_R \frac{1}{2}(1-z)(1+3z)$$

Simple form of the coefficient functions with no singular terms!

- Quark and anti-quark PDFs are redefined by:
 - subtracting $C_{2q}^{MC}(z)$ and $C_{2g}^{MC}(z)$ from \overline{MS} PDFs
 - absorbing all z-dependent terms from MS coefficient functions

The virtual correction:

$$C_{2q}\Big|_{\operatorname{virt}} = \delta(1-z)\left(rac{4}{3}\pi^2 - rac{5}{2}
ight)$$

is applied multiplicatively.

Complete coverage of phase space

Herwig++ (Dipole Shower) -1 -2 -3

MS vs MC at LO

- ▶ +5% effect at central rapidities in $q\bar{q}$ and -20% for both channels
- ▶ pronounced difference at large y coming from the $x \sim 1$ region

$$x_{1,2} = \frac{m_Z}{\sqrt{s}} e^{\pm y_Z}$$

Reweighting procedure

The "Sudakov" form factor for he CS shower

$$S(Q^{2}, \Lambda^{2}, x) = \int_{\Lambda^{2}}^{Q^{2}} \frac{dq^{2}}{q^{2}} \int_{z_{\min}(q^{2})}^{z_{\max}(q^{2})} dz \quad K(q^{2}, z, x),$$

where

$$K(q^2, z, x) = \frac{C_F \alpha_s}{2\pi} \frac{1+z^2}{1-z} \frac{D(q^2, x/z)/z}{D(q^2, x)}.$$

• z, q^2 - internal variables of the shower

• $D(q^2, x)$ - parton distribution functions

The kernel K is just a CS dipole written in terms of shower's internal variables multiplied by the ratio of PDFs due to backward evolution.

Validation: \overline{MS} scheme vs MC scheme at NLO

Cross section, truncated at $\mathcal{O}(\alpha_s)$, cannot depend on fact. scheme

$$\sigma_{\rm tot}^{\overline{\rm MS}} \stackrel{!}{=} \sigma_{\rm tot}^{\rm MC}$$

We have

$$\begin{split} \sigma_{\rm tot}^{\rm \overline{MS}} &= f_q \otimes (1 + \alpha_s \, C_q^{\rm \overline{MS}}) \otimes f_{\bar{q}} \\ \sigma_{\rm tot}^{\rm MC} &= (f_q + \alpha_s \Delta f_q) \otimes (1 + \alpha_s \, C_q^{\rm MC}) \otimes (f_{\bar{q}} + \alpha_s \Delta f_{\bar{q}}) \\ {\sf At} \, \, \mathcal{O}(\alpha_s): \\ C_q^{\rm \overline{MS}} f_q f_{\bar{q}} &= \Delta f_q f_{\bar{q}} + \Delta f_{\bar{q}} f_q + C_q^{\rm MC} f_q f_{\bar{q}} \end{split}$$

Drell-Yan, $q\bar{q}$ channel, $\alpha_s = \alpha_s(m_Z)$, MCFM, MSTW2008LO

$$(336.36 \pm 0.09) \, \text{pb} = \underbrace{25.79 \, \text{pb} + 25.79 \, \text{pb} + 284.77 \, \text{pb}}_{(336.35 \pm 0.09) \, \text{pb}}$$

- Final result is scheme-independent up to $\mathcal{O}(\alpha_s)$.
- Terms $\mathcal{O}(\alpha_s^2) \simeq 16 \text{ pb}$, for this example; $\mathcal{O}(\alpha_s^3) \simeq 0.2 \text{ pb}$.

 $\hookrightarrow \text{Identical validation performed with both } q\bar{q} \text{ and } qg \text{ channels.}$ Sebastian Sapeta (IFJ PAN Kraków) NLO+PS matching and perspectives for NLO PS

Drell-Yan: Matched results, total cross section

 $qar{q}$ channel

 $qar{q}+qg$ channels

	$\sigma_{\rm tot}^{q\bar{q}}$ [pb]
MCFM	1273.4 ± 0.1
MC@NLO	1273.4 ± 0.1
POWHEG	1272.1 ± 0.7
KrkNLO $\alpha_s(q^2)$	1282.6 ± 0.2
KrkNLO $\alpha_s(M_Z^2)$	1285.3 ± 0.2

- sub-percent differences from beyond-NLO terms in the KrkNLO result (MC PDFs, mixed real-virtual)
- negligible difference between fixed and running coupling

	$\sigma_{ ext{tot}}^{qar{q}+qg}$ [pb]
MCFM	1086.5 ± 0.1
MC@NLO	1086.5 ± 0.1
POWHEG	1084.2 ± 0.6
KrkNLO $\alpha_s(q^2)$	1045.4 ± 0.1
KrkNLO $\alpha_s(M_Z^2)$	1039.0 ± 0.1

- ► beyond-NLO terms reach up to 4% in the KrkNLO result \hookrightarrow resulting from large gluon luminosity leading to $f^{MC}/f^{\overline{MS}} < 1$
- small differences between fixed and running coupling choices

Drell-Yan: Matched results, $q\bar{q}$, 1st emission

- Reproduction of y_Z distribution at NLO.
- Agreement of KrkNLO $\alpha_s(q^2)$ with MC@NLO at low $p_{T,Z}$: PS domination
- ▶ KrkNLO results above MC@NLO and MCFM at higher $p_{T,Z}$: $O(\alpha_s^2)$ terms

Drell-Yan: Matched results, $q\bar{q}$, full PS

- Low p_{T,Z} part of the spectrum changes but KrkNLO α_s(q²) with MC@NLO agree there because of shower domination
- ▶ KrkNLO results above pure NLO at high $p_{T,Z}$: admixture of NNLO terms
- ▶ Diffs between two KrkNLO result at high $p_{T,Z}$: running coupling effects