NLO+PS matching and perspectives for NLO PS

Sebastian Sapeta

IF I PAN Kraków

in collaboration with: S. Jadach, G. Nail, W. Płaczek, A. Siódmok and M. Skrzypek

mostly based on: JHEP 1510 (2015) 052, Eur.Phys.J. C76 (2016) no.12, 649, Eur.Phys.J. C77 (2017) no.3, 164

MC4BSM, SLAC, 13 May 2017

Big goal

Big goal

Outline and motivation

1. A method of NLO+PS matching applied to Drell-Yan and Higgs production

Outline and motivation

1. A method of NLO+PS matching applied to Drell-Yan and Higgs production

Key ingredients:

- \triangleright new factorization scheme leading to new PDFs
- \triangleright NLO correction applied to PS via reweighting of MC events

Outline and motivation

1. A method of NLO+PS matching applied to Drell-Yan and Higgs production

Key ingredients:

- \triangleright new factorization scheme leading to new PDFs
- \triangleright NLO correction applied to PS via reweighting of MC events

Why do we develop a new method?

- ▶ By departing from $\overline{\text{MS}}$, the NLO+PS matching becomes very simple \rightarrow just multiplying by a positive MC weight.
- If it is so simple at NLO+LO PS, there is a hope that pushing it to NNLO+NLO PS will be possible.

2. Status of the NLO parton shower development

Benefits of matching fixed order results with parton shower

PS gives correct behaviour at low p_T and only approximate at high p_T . The production of a gluon with p_{Tg} is given by

$$
d\sigma_1^{PS} = B \cdot K(p_{\mathcal{T}_g}) \, \Delta(Q, p_{\mathcal{T}_g}) \, d\phi_B d\phi_1
$$

where $B \cdot K \sim R$ and the Sudakov $\Delta(Q, p_{Tg})$ suppresses emissions between scales Q and p_{Tg} .

LO+PS can be achieved by upgrading $B \cdot K$ to the exact R

 $d\sigma_1^{\mathsf{LO+PS}}$ $= R(p_{Tg})\Delta(Q, p_{Tg}) d\phi_B d\phi_1$

Upgrade to $NLO + PS$

Naive addition of PS on top of a NLO event leads to double counting since PS will generate contributions already present at NLO!

Upgrade to $NLO + PS$

Naive addition of PS on top of a NLO event leads to double counting since PS will generate contributions already present at NLO!

- ▶ MC@NLO [Frixione & Webber '02] and POWHEG [Nason '04]
	- \triangleright Generate the hardest radiation based on the NLO cross section adjusted for subsequent shower emissions.
	- \triangleright Pass the event to parton shower and let it produce further emissions.

Upgrade to $NLO + PS$

Naive addition of PS on top of a NLO event leads to double counting since PS will generate contributions already present at NLO!

- ▶ MC@NLO [Frixione & Webber '02] and POWHEG [Nason '04]
	- \triangleright Generate the hardest radiation based on the NLO cross section adjusted for subsequent shower emissions.
	- \triangleright Pass the event to parton shower and let it produce further emissions.
- \triangleright KrkNLO [Jadach, Kusina, Płaczek, Skrzypek & Sławińska '13; Jadach, Płaczek, Sapeta, Siódmok & Skrzypek '15 – '17]
	- \blacktriangleright Run PS in a standard way.
	- Reweight the event with real \times virtual NLO correction.
	- \triangleright Redefine PDFs to account for "collinear" part of the NLO contribution.

The KrkNLO method

Production of a colour-neutral object

Sudakov variables:

$$
\alpha = \frac{2k \cdot p_B}{s} = \frac{2k^+}{\sqrt{s}}
$$

\n
$$
\beta = \frac{2k \cdot p_F}{s} = \frac{2k^-}{\sqrt{s}}
$$

\n
$$
\alpha = 1 - \alpha - \beta
$$

\n
$$
k_T^2 = s\alpha\beta
$$

\n
$$
y = \frac{1}{2} \ln \frac{\alpha}{\beta}
$$

Important subtlety

NLO cross section in $\overline{\text{MS}}$ factorization scheme (DY in $q\bar{q}$ channel)

$$
d\sigma^{\alpha_s}_{\rm DY} \;\; = \;\; \sigma^B_{\rm DY} \, f^{\overline{\rm MS}}_q(x_1,\hat{s}) \otimes \frac{\alpha_s}{2\pi} C^{\overline{\rm MS}}_{q\bar{q}}(z) \otimes f^{\overline{\rm MS}}_{\bar{q}}(x_2,\hat{s}) \,,
$$

where

$$
C_{q\bar{q}}^{\overline{\rm MS}}(z) = C_{F}\left[4(1+z^{2})\left(\frac{\ln(1-z)}{1-z}\right)_{+} - 2\frac{1+z^{2}}{1-z}\ln z + \delta(1-z)\left(\frac{2}{3}\pi^{2}-8\right)\right].
$$

Important subtlety

NLO cross section in $\overline{\text{MS}}$ factorization scheme (DY in $q\bar{q}$ channel)

$$
d\sigma^{\alpha_s}_{\rm DY} \;\; = \;\; \sigma^B_{\rm DY} \, f^{\overline{\rm MS}}_q(x_1,\hat{s}) \otimes \frac{\alpha_s}{2\pi} C^{\overline{\rm MS}}_{q\bar{q}}(z) \otimes f^{\overline{\rm MS}}_{\bar{q}}(x_2,\hat{s}) \,,
$$

where

$$
C_{q\bar{q}}^{\overline{\rm MS}}(z) = C_{F}\left[4(1+z^{2})\left(\frac{\ln(1-z)}{1-z}\right)_{+} - 2\frac{1+z^{2}}{1-z}\ln z + \delta(1-z)\left(\frac{2}{3}\pi^{2}-8\right)\right].
$$

 \triangleright We want to reproduce this with Monte Carlo, in a fully exclusive way.

Important subtlety

NLO cross section in $\overline{\text{MS}}$ factorization scheme (DY in $q\bar{q}$ channel)

$$
d\sigma^{\alpha_s}_{\rm DY} \;\; = \;\; \sigma^B_{\rm DY} \, f_q^{\overline{\rm MS}}(x_1,\hat{\bf s}) \otimes \frac{\alpha_s}{2\pi} C_{q\bar{q}}^{\overline{\rm MS}}(z) \otimes f_{\bar{q}}^{\overline{\rm MS}}(x_2,\hat{\bf s}) \,,
$$

where

$$
C_{q\bar{q}}^{\overline{\rm MS}}(z) = C_F \left[4(1+z^2) \left(\frac{\ln(1-z)}{1-z} \right)_+ - 2 \frac{1+z^2}{1-z} \ln z + \delta(1-z) \left(\frac{2}{3} \pi^2 - 8 \right) \right].
$$

 \triangleright We want to reproduce this with Monte Carlo, in a fully exclusive way.

If we use $\overline{\text{MS}}$ PDFs, we need to generate terms like $\sim \left(\frac{\ln(1-z)}{1-z}\right)$ $\frac{(1-z)}{1-z}$ + which are technical artefacts of $\overline{\text{MS}}$ scheme (coming from ϵ/ϵ contributions).

If we think of a parton shower as a procedure that unfolds PDFs, then, obviously, these are not $\overline{\text{MS}}$ PDFs!

The KrkNLO method

Two essential elements

1. Change the factorization scheme from $\overline{\text{MS}}$ to MC

- \blacktriangleright produce new MC PDFs
- \blacktriangleright differences at IO
- \triangleright universality: recovering $\overline{\text{MS}}$ NLO result

2. Reweight parton shower

- \triangleright correct hardest emission by "real" weight
- **P** upgrade the cross section/distributions to NLO by multiplicative, constant "virtual" weight

The KrkNLO method

Two essential elements

1. Change the factorization scheme from $\overline{\text{MS}}$ to MC

- \blacktriangleright produce new MC PDFs
- \blacktriangleright differences at IO
- \triangleright universality: recovering $\overline{\text{MS}}$ NLO result
- 2. Reweight parton shower
	- \triangleright correct hardest emission by "real" weight
	- **P** upgrade the cross section/distributions to NLO by multiplicative, constant "virtual" weight

Practical implementation for the CS shower

Implemented in Sherpa/Herwig 7 with the Catani-Seymour (CS) shower.

- \rightarrow available in the new H7 release; http://krknlo.hepforge.org
- \triangleright The CS shower covers the entire space of $(α, β)$.
- The evolution variable is: $q^2 \simeq \alpha \beta s = k_T^2$.
- **Figure 1** Transformation of PDFs (example for $q\bar{q}$ channel)

$$
C_{q\bar{q}}^{\overline{\text{MS}}} = \rho_{q\bar{q}}^{\text{NLO}} - \Gamma_{q\bar{q}}^{\overline{\text{MS}}} \Rightarrow K_{q\bar{q}}^{\text{MC}} = C_{q\bar{q}}^{\overline{\text{MS}}} - C_{q\bar{q}}^{\text{MC}}
$$

$$
C_{q\bar{q}}^{\text{MC}} = \rho_{q\bar{q}}^{\text{NLO}} - \Gamma_{q\bar{q}}^{\text{MC}} \Rightarrow K_{q\bar{q}}^{\text{MC}} = C_{q\bar{q}}^{\overline{\text{MS}}} - C_{q\bar{q}}^{\text{MC}}
$$

which gives

$$
q_{\text{MC}}(x, Q^2) = q_{\overline{\text{MS}}}(x, Q^2) + \int_x^1 \frac{dz}{z} q_{\overline{\text{MS}}} \left(\frac{x}{z}, Q^2\right) K_{qq}^{\text{MC}}(z)
$$

- \triangleright Virtual correction applied multiplicatively.
- \triangleright The hardest real emission is upgraded to ME by reweighting.

PDFs in MC scheme

Definition of LO PDFs in MC factorization scheme

Rotation in flavour space:

$$
\begin{bmatrix} q(x,Q^2) \\ \bar{q}(x,Q^2) \\ g(x,Q^2) \end{bmatrix}_{MC} = \begin{bmatrix} q \\ \bar{q} \\ g \end{bmatrix}_{\overline{MS}} + \frac{\alpha_s}{2\pi} \int \frac{dz}{z} \begin{bmatrix} K_{qq}^{MC}(z) & 0 & K_{qg}^{MC}(z) \\ 0 & K_{\overline{q}\overline{q}}^{MC}(z) & K_{\overline{q}\overline{q}}^{MC}(z) \\ K_{gq}^{MC}(z) & K_{gg}^{MC}(z) & K_{gg}^{MC}(z) \end{bmatrix} \begin{bmatrix} q(\frac{x}{z},Q^2) \\ \bar{q}(\frac{x}{z},Q^2) \\ g(\frac{x}{z},Q^2) \end{bmatrix}_{\overline{MS}}
$$

where

$$
K_{gg}^{\text{MC}}(z) = C_F \left\{ \frac{1 + (1 - z)^2}{z} \ln \frac{(1 - z)^2}{z} + z \right\}
$$

\n
$$
K_{gg}^{\text{MC}}(z) = C_A \left\{ 4 \left[\frac{\ln(1 - z)}{1 - z} \right]_+ + 2 \left[\frac{1}{z} - 2 + z(1 - z) \right] \ln \frac{(1 - z)^2}{z} - 2 \frac{\ln z}{1 - z}
$$

\n
$$
- \delta(1 - z) \left(\frac{\pi^2}{3} + \frac{341}{72} - \frac{59}{36} \frac{T_f}{C_A} \right) \right\}
$$

\n
$$
K_{qq}^{\text{MC}}(z) = C_F \left\{ 4 \left[\frac{\ln(1 - z)}{1 - z} \right]_+ - (1 + z) \ln \frac{(1 - z)^2}{z} - 2 \frac{\ln z}{1 - z} + 1 - z - \delta(1 - z) \left(\frac{\pi^2}{3} + \frac{17}{4} \right) \right\}
$$

\n
$$
K_{qg}^{\text{MC}}(z) = T_R \left\{ \left[z^2 + (1 - z)^2 \right] \ln \frac{(1 - z)^2}{z} + 2z(1 - z) \right\}
$$

MC PDFs

- \triangleright More gluons and less quarks at low x : momentum sum rules preserved!
- ▶ We checked directly the scheme independence of NLO cross sections!

Differences between MS PDF sets carry on to MC PDFs

Sebastian Sapeta (IFJ PAN Kraków) [NLO+PS matching and perspectives for NLO PS](#page-0-0) 14 / 34

Reweighting the parton shower

$$
\sigma^{\text{LO}} = \sigma_B \otimes f_{\oplus}(Q^2, x_{\oplus}) \otimes f_{\ominus}(Q^2, x_{\ominus})
$$

$\sigma_{1+}^{\mathsf{PS}} \;\; = \;\; \sigma_{\mathcal{B}} \otimes f_{\oplus}(\mathcal{Q}^2, \mathsf{x}_{\oplus}) \otimes f_{\ominus}(\mathcal{Q}^2, \mathsf{x}_{\ominus})$ $\otimes\Big\{S_{\oplus}(q_{1}^2,Q^2)K_{\oplus}(q_{1}^2,z_{1})S_{\ominus}(q_{1}^2,Q^2) + S_{\ominus}(q_{1}^2,Q^2)K_{\ominus}(q_{1}^2,z_{1})S_{\oplus}(q_{1}^2,Q^2)\Big\}$

$$
\begin{array}{lll} \sigma_{2+}^{\mathsf{PS}} & = & \sigma_{\mathcal{B}} \otimes f_{\oplus}(Q^2, \mathsf{x}_{\oplus}) \otimes f_{\ominus}(Q^2, \mathsf{x}_{\ominus}) \\ & \otimes \Big\{ S_{\oplus}(q_1^2, Q^2) K_{\oplus}(q_1^2, z_1) S_{\ominus}(q_1^2, Q^2) \\ & & \otimes \Big\{ S_{\oplus}(q_2^2, q_1^2) K_{\oplus}(q_2^2, z_2) S_{\ominus}(q_2^2, q_1^2) + S_{\oplus}(q_2^2, q_1^2) K_{\ominus}(q_2^2, z_2) S_{\ominus}(q_2^2, q_1^2) \Big\} \\ & & + S_{\ominus}(q_1^2, Q^2) \otimes K_{\ominus}(q_1^2, z_1) \otimes S_{\oplus}(q_1^2, Q^2) \\ & & \otimes \Big\{ S_{\oplus}(q_2^2, q_1^2) K_{\oplus}(q_2^2, z_2) S_{\ominus}(q_2^2, q_1^2) + S_{\oplus}(q_2^2, q_1^2) K_{\ominus}(q_2^2, z_2) S_{\ominus}(q_2^2, q_1^2) \Big\} \Big\} \end{array}
$$

 $\sigma_{2+}^{\mathsf{NLO+PS}}$ $S_{2+}^{\text{NLO+PS}} = \sigma_B (1+V) \otimes f_{\oplus} (Q^2, x_{\oplus}) \otimes f_{\ominus} (Q^2, x_{\ominus})$ $\otimes \Big\{ \mathcal{S}_{\oplus}(q_{1}^2, Q^2) \mathcal{K}_{\oplus}(q_{1}^2, z_{1}) \mathcal{S}_{\ominus}(q_{1}^2, Q^2) \, R_{\oplus}(q_{1}^2, z_{1})/ \mathcal{K}_{\oplus}(q_{1}^2, z_{1})$ $\otimes\Big\{S_\oplus(q_2^2,q_1^2) \mathcal{K}_\oplus(q_2^2,z_2) S_\ominus(q_2^2,q_1^2) + S_\oplus(q_2^2,q_1^2) \mathcal{K}_\ominus(q_2^2,z_2) S_\ominus(q_2^2,q_1^2) \Big\}$ $+ \; {\cal S}_\circleddash (\bar{q}_1^2, \bar{Q}^2) \otimes {\cal K}_\circleddash (\bar{q}_1^2, \bar{z}_1) \otimes {\cal S}_\oplus (\bar{q}_1^2, \bar{Q}^2) \, R_\circleddash (\bar{q}_1^2, \bar{z}_1) / {\cal K}_\circleddash (\bar{q}_1^2, \bar{z}_1)$ $\otimes\Big\{S_\oplus(q_2^2,q_1^2) \mathcal{K}_\oplus(q_2^2,z_2) S_\ominus(q_2^2,q_1^2) + S_\oplus(q_2^2,q_1^2) \mathcal{K}_\ominus(q_2^2,z_2) S_\ominus(q_2^2,q_1^2) \Big\} \Big\}$

The MC weights

Real:

$$
W_R^{q\bar{q}} = 1 - \frac{2\alpha\beta}{1 + z^2}
$$
\n
$$
W_R^{q\bar{q}} = 1 + \frac{\beta(\beta + 2z)}{(1 - z)^2 + z^2}
$$
\n
$$
W_R^{gg} = \frac{1 + z^4 + \alpha^4 + \beta^4}{1 + z^4 + (1 - z)^4}
$$
\n
$$
W_R^{gq} = \frac{1 + \beta^2}{1 + (1 - z)^2}
$$

Virtual:

$$
W_V^{q\bar{q}} = \frac{\alpha_s}{2\pi} C_F \left[\frac{4}{3}\pi^2 + \frac{1}{2} \right]
$$

\n
$$
W_V^{gg} = \frac{\alpha_s}{2\pi} C_A \left[\frac{4}{3}\pi^2 + \frac{473}{36} + \frac{59}{18} \frac{T_f}{C_A} \right]
$$

\n
$$
W_V^{gq} = 0
$$

\n
$$
W_V^{gq} = 0
$$

- \blacktriangleright Real weights are simple functions of kinematic variables One can compute them on the fly, inside MC, or outside, using information from event record.
- \triangleright Virtual+soft weights are constant

Results: Drell-Yan

Drell-Yan: calculational setup

KrkNLO

- \blacktriangleright $\mu_F^2 = m_Z^2$
- \blacktriangleright Virtual: $\mu_R^2 = m_Z^2$
- \blacktriangleright Real: two choices

$$
\blacktriangleright \mu_R^2 = m_Z^2
$$

 \blacktriangleright $\mu_R^2 = q^2$, where $q \simeq k_T$ is the PS evolution variable

 \rightarrow differences formally beyond NLO, indicative of missing higher orders

Compared to:

- \blacktriangleright MCFM: pure NLO, $\mu_F^2 = \mu_R^2 = m_Z^2$
- \blacktriangleright **MC@NLO**: from Sherpa/Herwig 7, with the evolution var. $q^2 \simeq k_T^2$
- **POWHEG**: from Herwig 7 with the evolution variable k_T^2
- **DYNNLO**: pure NNLO, $\mu_F^2 = \mu_R^2 = m_Z^2$

Drell-Yan: Matched results, botch channels, 1st emission

 \blacktriangleright Moderate differences between KrkNLO $\alpha_s(q^2)$ and MC@NLO in the region below M_Z and between KrkNLO $\alpha_s(M_Z^2)$ and MC@NLO in the region above M_Z

Drell-Yan: Matched results, both channels, full PS

8 TeV: $q\bar{q}$ and qg channels (full parton shower)

 \blacktriangleright KrkNLO $\alpha_s(q^2)$ stays overall very close to MC@NLO

EXECUTE: KrkNLO $\alpha_s(q^2)$ almost coincides with POWHEG $p_{T,Z}$ distributions

Sebastian Sapeta (IFJ PAN Kraków) **NLO+PS** matching and perspectives for NLO PS 21 / 34

Drell-Yan: Comparison to NNLO

- ► KrkNLO with α_s (min(q^2 , M_z^2)) nicely follows full NNLO at high $p_{T,Z}$
- the fact that the KrkNLO result is higher than NLO comes from partial accounting for $\mathcal{O}\big(\alpha_s^2\big)$ terms, those introduced by the multiplicative correction to the parton shower $R \otimes V$

Results: Higgs from gluon fusion

Higgs from gluon fusion: calculational setup

- \blacktriangleright heavy top effective vertex, $m_t \to \infty$
- $\blacktriangleright \sqrt{s} = 8$ TeV
- \blacktriangleright fully inclusive
- \blacktriangleright stable Higgs
- ightharpoonup virtual part: $\mu_R^2 = m_H^2$
- real part: $\mu_R = \text{min}(q^2, m_H^2)$

Comparisons to:

- \blacktriangleright MC@NLO
- \triangleright POWHEG
	- \blacktriangleright default: p_{τ} of PS emissions $\lt \mu_F$
	- \triangleright original: no restriction on p_T of PS emissions
- \blacktriangleright HNNLO: fixed order result

Total cross section

Total cross section for Higgs production via gluon-fusion

 \rightarrow 2% differences w.r.t. MC@NLO/POWHEG: $R \otimes V$ terms and $\overline{\text{MS}} \rightarrow \text{MC}$ PDF transformation

Higgs transverse momentum distributions

ightharpoonup similar results for all predictions in the range $5 \text{ GeV} < p_T < 100 \text{ GeV}$

- ▶ for $p_T > 100$ GeV: KrkNLO differs from MC@NLO/Powheg (default), as, in the latter, PS emissions are restricted by $p_T < m_H$
- \triangleright no such restriction in Powheg (orig), hence, this result is close to KrkNLO

Comparison to NNLO

In KrkNLO nicely follows full NNLO at high p_T^H ; partial accounting for NNLO terms through $R \otimes V$ corrections applied to the parton shower

Comparison to data [8 TeV, ATLAS]

► contributions from other channels, XH, added; account for \sim 12% of the x-sec.

- \blacktriangleright all predictions compatible and undershoot the data (PDF uncert. negligible)
- \blacktriangleright experimental uncertainties still very large

Perspectives for NLO PS

LO ladder

^D¯ LO(x, ^Q) =X[∞] n=0 **2** *1 n 2 n−1 x* = e [−]^S ^X[∞] n=0 Yn i=1 d 3ki k 0 i θQ>ai>ai−¹ ρ (0) 1 (ki)

 \mathbf{r}

where

$$
\rho_1^{(0)}(k_i) = \frac{2C_F^2\alpha_s}{\pi} \frac{1}{k_i^{T2}} \frac{1+z^2}{2}
$$

NLO ladder

NLO ladder

The exclusive, NLO weights read

$$
\beta_0^{(1)} = \left|\begin{array}{c} \rule{0pt}{2ex} \rule{0
$$

Status of NLO PS

 \triangleright NLO kernels recalculated in exclusive form and cross-checked against the inclusive kernels of Curci, Furmanski, Petronzio [arXiv:1102.5083, 1401.1587, 1606.01238]

Proof of concept

 \triangleright numerical comparison of toy PDFs from inclusive and exclusive DGLAP evolution

Next step

 \triangleright apply the same strategy as for NLO+PS matching

existing solution for toy $PS \rightarrow$ realistic PS

 \hookrightarrow Recent Development in the framework of DIRE shower

[Höche, Krauss, Prestel '17]

Conclusions

- \triangleright KrkNLO: a method of NLO+PS matching:
	- \triangleright Real emissions are corrected by simple reweighting.
	- \triangleright Collinear terms are dealt with by putting them to PDFs. This amounts to change of factorization scheme from $\overline{\text{MS}}$ to MC.
	- \triangleright Virtual correction is just a constant and does not depend on Born kinematics.
- \blacktriangleright The method has been implemented for Drell-Yan and Higgs production on top of Catani-Seymour shower in Sherpa 2.0 and Herwig 7 event generators.
- ▶ Comparisons to MCFM, DYNNLO, HNNLO, MC@NLO, POWHEG.
- \triangleright The results of KrkNLO matching procedure at NLO+LL level come out consistent with fixed order NLO and other matching methods.
- \blacktriangleright Tails of distributions of $p_{T,Z}$ and $p_{T,H}$ close to NNLO.
- \triangleright Proof of concept of NLO PS exists. Transferring that to a real-life PS is our next objective.

BACKUP

Fixed order calculations in QCD

General structure of NLO cross sections:

$$
d\sigma = \left[B + V(\alpha_s) + C(\alpha_s)\right]d\phi_B + R(\alpha_s) d\phi_B d\phi_1
$$

- \triangleright B, R, V Born, real and virtual part
- \triangleright C collinear subtraction counterterm (for initial state radiation case)

Calculation possible e.g. by means of subtraction procedure

$$
d\sigma = \left[B + V(\alpha_s) + \int_1 A(\alpha_s) d\phi_1 + C(\alpha_s)\right] d\phi_B + \int_1 \left[R(\alpha_s) - A(\alpha_s)\right] d\phi_1 d\phi_B,
$$

where $A \simeq R$, such that it reproduces collinear and soft singularities.

Good for inclusive observables or distributions at high- p_T .

Parton shower

In the collinear region, fixed order calculation becomes unreliable because each α_s^n is accompanied by a large, logarithmic coefficient, \ln^n , and

$$
(\alpha_s \ln)^n \sim 1 \text{ for all } n.
$$

These terms must be summed to all orders and this is what the Parton Shower (PS) is aiming at. In the collinear limit

$$
d\sigma_{n+1} \simeq d\sigma_n \frac{\alpha_s(q^2)}{2\pi} \frac{dq^2}{q^2} P(z) dz.
$$

This can be iterated and used to resum all leading log contributions. In particular, non-emission probability (Sudakov form factor) is given by

$$
\Delta(q_1,q_2)=\exp\left[-\int_{q_1}^{q_2}\frac{\alpha_s(q^2)}{2\pi}\frac{dq^2}{q^2}\int_{z_0}^1\!\!P(z)\,dz\right].
$$

In Monte Carlo event generators, the scale of ith emission, q_i , is found by solving $\varDelta(q_{i-1},q_i) = R_i$

$$
\Delta(q_{i-1},q_i)=R_i\,,
$$

where R_i ∈ [0, 1] is a random number and q_{i-1} is a scale of previous emission.

Origin of $4 \frac{\ln(1-z)}{1-z}$ $\frac{(1-2)}{1-z}$ in MS

Origin of $4 \frac{\ln(1-z)}{1-z}$ $\frac{(1-2)}{1-z}$ in MS

Origin of $4 \frac{\ln(1-z)}{1-z}$ $\frac{(1-2)}{1-z}$ in MS

Could we reorganize phase space integration to remove the oversubtraction?

Could the change of factorization scheme help us to simplify NLO+PS matching?

Implementation on top of the Catani-Seymour shower

 \hookrightarrow We used Sherpa 2.0.0 implementation of the CS shower.

Phase space measure of emitted gluon

$$
\frac{d\alpha}{\alpha}\frac{d\beta}{\beta} = \frac{d\alpha d\beta}{\beta(\alpha+\beta)} + \frac{d\alpha d\beta}{\alpha(\alpha+\beta)}
$$

 \blacktriangleright The evolution variable:

$$
q_{\scriptscriptstyle \beta}^2 = s(\alpha + \beta)\beta, \hspace{1cm} q_{\scriptscriptstyle \beta}^2 = s(\alpha + \beta)\alpha\,,
$$

hence

$$
\frac{d\alpha d\beta}{\alpha\beta}=\frac{dq_{F}^{2}}{q_{F}^{2}}\frac{dz}{1-z}+\frac{dq_{B}^{2}}{q_{B}^{2}}\frac{dz}{1-z}.
$$

 \triangleright The CS shower covers all space of $(α, β)$.

$$
\begin{array}{rcl}\n\alpha + \beta \leq 1 & \Rightarrow & z \geq 0 \quad \text{and} \quad q_{F,B}^2 \leq s \\
\alpha, \beta > 0 & \Rightarrow & (1-z)^2 > q_F^2/s \quad \text{or} \quad (1-z)^2 > q_B^2/s\n\end{array}
$$

Implementation on top of the Catani-Seymour shower

 \hookrightarrow It turns out that coefficient functions of the CS shower equal to those from the MC scheme of Jadach et al. arXiv:1103.5015. Hence, $CS \equiv MC$.

The $C_2(z)$ function:

$$
C_2^{\text{MC}}(z)\Big|_{\text{real}} = \int (R - K)
$$

For the $q\bar{q}$ channel:

$$
C_{2q}^{\text{MC}}(z)\Big|_{\text{real}} = \frac{\alpha_s}{2\pi} C_F \left[-2(1-z)\right]
$$

 \blacktriangleright For the *qg* channel:

$$
C_{2g}^{\text{MC}}(z)\Big|_{\text{real}} = \frac{\alpha_s}{2\pi} \mathcal{T}_R \frac{1}{2} (1-z)(1+3z)
$$

- \triangleright Quark and anti-quark PDFs are redefined by:
	- \blacktriangleright subtracting $C_{2q}^{\text{MC}}(z)$ and $C_{2g}^{\text{MC}}(z)$ from $\overline{\text{MS}}$ PDFs
	- \triangleright absorbing all z-dependent terms from $\overline{\text{MS}}$ coefficient functions

 \blacktriangleright The virtual correction:

$$
C_{2q}\Big|_{\mathsf{virt}} = \delta(1-z)\left(\frac{4}{3}\pi^2-\frac{5}{2}\right)
$$

is applied multiplicatively.

Implementation on top of the Catani-Seymour shower

 \hookrightarrow It turns out that coefficient functions of the CS shower equal to those from the MC scheme of Jadach et al. arXiv:1103.5015. Hence, $CS \equiv MC$.

The $C_2(z)$ function:

$$
C_2^{\text{MC}}(z)\Big|_{\text{real}} = \int (R - K)
$$

For the $q\bar{q}$ channel:

$$
C_{2q}^{\text{MC}}(z)\Big|_{\text{real}} = \frac{\alpha_s}{2\pi} C_F \left[-2(1-z)\right]
$$

 \blacktriangleright For the *qg* channel:

$$
C_{2g}^{\text{MC}}(z)\Big|_{\text{real}} = \frac{\alpha_s}{2\pi} T_R \frac{1}{2}(1-z)(1+3z)
$$

Simple form of the coefficient functions with no singular terms!

- \triangleright Quark and anti-quark PDFs are redefined by:
	- \blacktriangleright subtracting $C_{2q}^{\text{MC}}(z)$ and $C_{2g}^{\text{MC}}(z)$ from $\overline{\text{MS}}$ PDFs
	- \triangleright absorbing all z-dependent terms from $\overline{\text{MS}}$ coefficient functions

 \blacktriangleright The virtual correction:

$$
C_{2q}\Big|_{\mathsf{virt}} = \delta(1-z)\left(\frac{4}{3}\pi^2-\frac{5}{2}\right)
$$

is applied multiplicatively.

Complete coverage of phase space

Herwig++ (Dipole Shower)

MS vs MC at LO

- \rightarrow +5% effect at central rapidities in $q\bar{q}$ and -20% for both channels
- pronounced difference at large y coming from the $x \sim 1$ region

$$
x_{1,2}=\frac{m_Z}{\sqrt{s}}e^{\pm y_Z}
$$

Reweighting procedure

The "Sudakov" form factor for he CS shower

$$
S(Q^2, \Lambda^2, x) = \int\limits_{\Lambda^2}^{Q^2} \frac{dq^2}{q^2} \int\limits_{z_{\text{min}}(q^2)}^{z_{\text{max}}(q^2)} dz \ K(q^2, z, x) \,,
$$

where

$$
K(q^2, z, x) = \frac{C_F \alpha_s}{2\pi} \frac{1+z^2}{1-z} \frac{D(q^2, x/z)/z}{D(q^2, x)}.
$$

 \blacktriangleright z, q^2 - internal variables of the shower

 $D(q^2, x)$ - parton distribution functions

The kernel K is just a CS dipole written in terms of shower's internal variables multiplied by the ratio of PDFs due to backward evolution.

Validation: MS scheme vs MC scheme at NLO

Cross section, truncated at $\mathcal{O}(\alpha_s)$, cannot depend on fact. scheme

$$
\sigma_{\rm tot}^{\overline{\rm MS}}\stackrel{!}{=}\sigma_{\rm tot}^{\rm MC}
$$

We have

$$
\sigma_{\text{tot}}^{\overline{\text{MS}}} = f_q \otimes (1 + \alpha_s \, C_q^{\overline{\text{MS}}}) \otimes f_q
$$
\n
$$
\sigma_{\text{tot}}^{\text{MC}} = (f_q + \alpha_s \Delta f_q) \otimes (1 + \alpha_s \, C_q^{\text{MC}}) \otimes (f_{\bar{q}} + \alpha_s \Delta f_{\bar{q}})
$$
\nAt $\mathcal{O}(\alpha_s)$:
\n
$$
C_q^{\overline{\text{MS}}} f_q f_{\bar{q}} = \Delta f_q f_{\bar{q}} + \Delta f_{\bar{q}} f_q + C_q^{\text{MC}} f_q f_{\bar{q}}
$$

Drell-Yan, $q\bar{q}$ channel, $\alpha_s = \alpha_s(m_Z)$, MCFM, MSTW2008LO

$$
(336.36 \pm 0.09) pb = 25.79 pb + 25.79 pb + 284.77 pb
$$

$$
(336.35 \pm 0.09) pb
$$

- Final result is scheme-independent up to $\mathcal{O}(\alpha_s)$.
- ► Terms $\mathcal{O}(\alpha_s^2) \simeq 16$ pb, for this example; $\mathcal{O}(\alpha_s^3) \simeq 0.2$ pb.

 \hookrightarrow Identical validation performed with both $q\bar{q}$ and $q\bar{q}$ channels. Sebastian Sapeta (IFJ PAN Kraków) **NLO+PS** matching and perspectives for NLO PS 45 / 34

Drell-Yan: Matched results, total cross section

 $q\bar{q}$ channel

 $q\bar{q} + qg$ channels

- \blacktriangleright sub-percent differences from beyond-NLO terms in the KrkNLO result (MC PDFs, mixed real-virtual)
- \blacktriangleright negligible difference between fixed and running coupling

- \blacktriangleright beyond-NLO terms reach up to 4% in the KrkNLO result \hookrightarrow resulting from large gluon luminosity leading to $f^{\textsf{MC}}/f^{\textsf{MS}} < 1$
- \blacktriangleright small differences between fixed and running coupling choices

Drell-Yan: Matched results, $q\bar{q}$, 1st emission

- Reproduction of y_Z distribution at NLO.
- Agreement of KrkNLO $\alpha_s(q^2)$ with MC@NLO at low $p_{T,Z}$: PS domination
- \blacktriangleright KrkNLO results above MC@NLO and MCFM at higher $p_{\mathcal{T},\mathcal{Z}} \colon \mathcal{O}\big(\alpha_{\mathcal{S}}^2\big)$ terms

Drell-Yan: Matched results, $q\bar{q}$, full PS

- \blacktriangleright Low $p_{\mathcal{T},Z}$ part of the spectrum changes but KrkNLO $\alpha_s(q^2)$ with MC@NLO agree there because of shower domination
- **INCO** KrkNLO results above pure NLO at high $p_{T,Z}$: admixture of NNLO terms
- Diffs between two KrkNLO result at high $p_{T,Z}$: running coupling effects