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Overview

• A little motivation.
• What is SARAH?
• Latest developments
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Motivation
Why do we need to go beyond theoretical standard candles?

The old ways are in trouble:
• For years, the dominant paradigm was SUSY, and it was a good idea to find the most

minimal models possible→ CMSSM, mSUGRA, MGM.
• Lots of work was put into hardcoding results for the MSSM: SPheno, SoftSUSY,

SuSpect, FeynHiggs, SuSHi etc.
• But now the “demise” of the CMSSM/mSUGRA in terms of interpretations of LHC

results is however already old news: in that model them�t > TeV,mχ & 450 GeV and
m�g & 2.2 TeV gives little chance of finding new physics.

• The MSSM in general is looking less natural, why not explore e.g. λ in NMSSM?

Going off the beaten track is now much easier to do:
• There has been much theoretical study of other alternatives, e.g. Dirac gauginos,

Technicolour/composite Higgs/PNGB/other strong coupling; neutal naturalness, etc.
• The rise of generic tools makes it much easier to study other cases.
• E.g. CalcHEP and MicrOmegas as forerunners.
• MadGraph/Whizard with UFO from Feynrules, LanHEP, SARAH
• SModelS, FastLim, MadAnalysis, CheckMATE, ...
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SARAH: a tool for BSM model builders

So what is SARAH ?

• Mathematica package created by F. Staub, with now several contributions from MDG.
• Takes an input model file for any SUSY or non-SUSY model: any renormalisable

lagrangian.
• Specify: gauge groups, matter content, superpotential/couplings in Lagrangian.
• Spectrum generation with SPheno. Produces fortran code which compiles against the

SPheno library to generate spectrum and precision observables etc for the model.

• Will calculate two-loop RGEs, one-loop masses for all particles inDR
′

(SUSY) orMS
(non-SUSY) models.

• Calculate two-loop neutral scalar masses, in either fixed-order or SMEFT approach.
• Produces interfaces for CalcHEP, MicrOMEGAS, UFO, Whizard,

Vevacious, HiggsBounds/HiggsSignals, FeynArts

• Calculation of low energy/flavour constraints (up to one loop).
• Production and decay of Higgs bosons including higher-order contributions.
• New feature in [MDG, Liebler and Staub, 1703.09237]: one-loop two-body decays (plus

real corrections) for all particles.
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ℒ
Compute vertices:
SARAH, LanHEP, 
FeynRules

Spectrum generator
SARAH-SPheno
FlexibleSUSY/EFT/...

Calculate amplitudes/cross-
sections:
CalcHEP, MadGraph, 
AMC@NLO (with NLOCT) 
Whizzard

Calculate mass matrices, 
mixing, RGEs, loop 
corrections: 
SARAH

Analyse events:
(root), MadAnalysis, 
CheckMATE, SmodelS, 
FastLim, ... 

Create events & shower:
MadGraph, Pythia, 
Herwig,...

Dark matter: 
MicrOMEGAs,
MadDM

Low energy 
constraints: 
SARAH/SPheno

Decays:
SARAH-Spheno 
(Full 1L),
MadGraph

Select
Points

Make assumptions about
spectrum

Higgsbounds/
HiggsSignals

Stability:
Vevacious
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Implementing models in SARAH
SARAH requires as input:
• Gauge and global symmetries.
• Gauge eigenstates before EWSB: in principle gauge group/reps are arbitrary (e.g. for

RGEs) but some features untested for SU(N> 3) and reps other than
(anti)fundamental/adjoint.

• Superpotential/Lagrangian. Here the notation is very compact, suppressing indices (the
gauge contractions are inferred), e.g. SM lagrangian:

LagNoHC =mu2 conj[H].H − 1/2λconj[H].H.conj[H].H;

LagHC = −(Ydconj[H].d.q+ Yeconj[H].e.l+ YuH.u.q);

• Set of vevs for gauge symmetry breaking
• Which fields mix together, name of the combined fields, name of the mixing matrices

(e.g. {{SdL, SdR}, {Sd, ZD}}).

SARAH will then
• Calculate all gauge interactions automatically, add gauge fixing in Rξ gauge
• Add soft SUSY breaking terms
• Calculate tadpole equations, mass matrices, vertices
• Check consistency of model: anomalies, charge conseration, missing terms, ...
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Loop corrections
SARAH calculates two loop RGEs by the command CalcRGEs[...]:
• General renormalisable field theories: [Machacek, Vaughn, ’83]×3, [Luo, Xiao hep-ph/0211440]

• For SUSY theories with simple gauge groups: [Martin, Vaughn hep-ph/9311340]

• Kinetic mixing: [Fonseca, Malinsky, (Porod), Staub 1107.2670, 1308.1674]

• Dirac gauginos: [MDG, 1206.6697]

• Running vevs in Rξ gauge: [Sperling, Stöckinger, Voigt 1305.1548,1310.7629]

Masses/tadpoles:

1. One-loop tadpoles and self-energies are computed for all states using
CalcOneLoopCorrections[...], stored in mathematica output

2. Two-loop tadpoles and self-energies are computed for neutral scalars
(Higgs/pseudoscalars) using Calc2LoopCorrections[states_]; currently this is
only possble during the SPheno code generation (or with a patch available on request);
in future it will be possible to call independently.

Decays:
• Higgs decays to gluons/photons have been supported for some time including many

higher-order contributions
• With [MDG, Liebler and Staub, 1703.09237] we now generate two-body loop decays for all

scalars and fermions as part of SPheno code output using
MakeSPheno[IncludeLoopDecays -> True].
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Other codes in the SARAH family

As listed above SARAH interfaces with everything to allow models to be
studied in all detail. But the closely related codes are

• SPheno: an MSSM spectrum generator. However, SARAH generates
code that links to the SPheno library for spectrum generation etc,
which has a similar structure to SPheno, but the two codes should not
be confused!

• SSP (SARAH Scan and Plot), by F. Staub: sets up and analyses scans.

• Vevacious [Camargo-Molina, O’Leary, Porod, Staub, 1307.1477]: investigates vacuum
stability.

• FlexibleSUSY [Athron, Park, Stöckinger, Voigt, 1406.2319]: uses SARAH output to
create a SoftSUSY-like spectrum generator.
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Bleeding edge

• The set of codes is now quite mature: the interfaces are well established and the flow
from Lagrangian to analysis can be performed efficiently.

• The challenge is now to obtain accuracy as close as possible as can be obtained for the
standard examples (SM & MSSM).

• In MadGraph the push is to get to NLO accuracy in all couplings (nearly there).
• In SARAH we now have one-loop two-body decays for all particles (plus real

corrections), but this can be improved (and we could add two-loop NLO corrections to
loop-induced processes, NLO three body decays ...)

• In SARAH the main frontier is the calculation of Higgs properties (mass, production,
decays).

• Our Higgs mass calculation has already reached what can be done for the MSSM, and in
some aspects exceeded it.

• → we find new technical challenges that weren’t present there (e.g. Goldstone Boson
Catastrophe even in gaugeless limit).
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Higher-order corrections to Higgs decays
The leading order contributions to neutral scalar→ γγ,gg have been included for some time:
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However, strong corrections are known to be important. Formf,s >mΦ, we include for
colour triplets:

rΦf → rf
(
1−

αs

π

)
, rΦs → rs

(
1+

8αs

3π

)
.

FormΦ > 20mf we have NLO light top corrections; for 20mf >mΦ > 2mf we have up
to NNNLO strong corrections fit from HDECAY.
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Production
• We also include the effectiveΦFµνFµν,ΦGµνGµν vertices in the UFO file, and the

coefficients are provided in the SLHA SPheno output.
• ... This corresponds to the NLO-corrected values for the decays.
• However, the corrections for production are very different; need to take into account
k-factor

k = cΦgg ·
σSM(pp→H(MΦ) + jet)

σMC(pp→Φ)
∼ 2

• To obtain Higgs production rates, we fit to SusHi production rates from the effective
vertex, includes many NLO strong corrections to the production; so even if we compute
pp→Φ+ j in MadGraph we are still out (but closer):
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Loop Decays

With [MDG, Liebler and Staub, 1703.09237] we now generate two-body loop decays for all scalars and
fermions and include three-body tree-level Bremsstrahlung emission:
• To do this, we computed all of the generic amplitudes, and wrote routines to populate

these with intermediate states, compute all of the group theory factors etc.
• The generic amplitudes are decomposed into Lorentz structures, e.g. S→ VV

decomposes as M ≡ ε∗µ(p1)ε∗ν(p2)
(
M1η

µν +M2p
µ
0p
ν
0

)
, and we then have

routines to square the amplitude by squaring the sums of these components.

Why do we need this? Could we not just use MadGraph or FormCalc?!
• To use MadGraph would require a renormalised model file, in an on-shell scheme but

with MS couplings. This is not always possible!
• In particular, we can use DR masses for SUSY models. We actually also allow the user

to provide counterterms for their own scheme (e.g. we give those to put the W/Z
on-shell).

• By automatising the process we can rapidly obtain numerical results. They can then be
fed into MadGraph as updated widths; or it can be useful for e.g. SmodelS.
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Z-factors

• To calculate in a momentum independent scheme means we need the LSZ reduction
formula to relate the external states to the loop ones.

• We do this by introducing Z-factors, e.g. S0i → ZSiSjSj = (δij +
1
2δZSiSj)Sj; we

give different options for these. Note that this means our results are the most accurate for
even the MSSM; SFOLD, HFOLD, FVSFOLD do not include them. E.g. for an
example MSSM point with bino LSP
M1 = 0.3MSUSY,µ = 0.5MSUSY,M2 = 0.75MSUSY :
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To preserve Ward IDs we also need to enforce relationships between would-be Goldstone boson
couplings and gauge boson couplings once we include Z-factors.
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Output

The new SPheno output gives both the old (leading order) and new (loop-corrected) decays,
e.g. contains:

DECAY 1000001 5.03001929E+01 # Sd_1
# BR NDA ID1 ID2

2.91393772E-01 2 6 -1000024 # BR(Sd_1 -> Fu_3 Cha_1)
1.70527978E-01 2 6 -1000037 # BR(Sd_1 -> Fu_3 Cha_2)

...
DECAY1L 1000001 5.07518318E+01 # Sd_1
# BR NDA ID1 ID2

2.86487000E-01 2 6 -1000024 # BR(Sd_1 -> Fu_3 Cha_1)
1.63886304E-01 2 6 -1000037 # BR(Sd_1 -> Fu_3 Cha_2)

...

This is because:
• The original DECAY block also allows IR-safe three-body decays
• The neutral scalar decays include our higher-order fit, and also h→ VvirtVvirt, so are

more accurate – except that the new routines include h→ Zγ!
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The Higgs mass as a precision electroweak observable
The current challenge is the Higgs mass calculation.
Consider the current experimental accuracy of the Higgs mass measurement:

ATLAS + CMS (Moriond 2015) : mH = 125.09± 0.21(stat) ± 0.11 (syst.)

The uncertainty is tiny!
In the Standard Model:
• The Higgs mass is used to calculate the Higgs quartic coupling L ⊃ −λ|H|2 (from

[Buttazzo et al, 1307.3536]):

λ(µ =mt) = 0.12604+0.00206
(mh

GeV
− 125.15

)
−0.00004

( mt

GeV
− 173.34

)
± 0.00030

• Vital for stability analysis (also needed in
principle for future triple/quartic Higgs
coupling measurements):

• State-of-the-art computation includes most
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For many years the standard example has been the MSSM:

• Quartic predicted to be determined entirely by gauge couplings at tree
level: λ = 1

8
(g2Y + g2

2
) cos2 2β in heavyMH limit.

• Hence→ mh(tree) 6MZ

• δm2

h(loops) > (86GeV)2 & m2

h(tree)

• Can have δmh(two loops) . 10 GeV→ δm2

h(two loops) ∼ 15%m2

h!

• While at three-loop order, have δmh ∼ few hundred MeV,
→ δm2

h(three loops) . 1%m2

h

Much work has led to: full one-loop calculation, two loops full
diagrammatic calculation for αsαt only; effective potential approximation
and gaugeless limit for (Yukawa coupling)4 diagrams, and three-loop α2sαt.
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Higgs mass BSM

Two ways of performing the calculation:

1. Calculate the Higgs mass and extract all parameters (top mass, αs,α,MZ, ...) in the
full theory, do a fixed-order calculation: good if there are other light Higgses!

2. Match the BSM theory to the SMEFT at some matching scale and use RGEs: much more
accurate if BSM states are heavy!

Some recent studies in the MSSM [Bagnaschi, Pardo Vega, Slavich, ’17 ] have shown that we
only need consider renormalisable operators in method 2 if the scale is & TeV.

SARAH is mainly built for option 1, but it now implements method 2 as well, via

BLOCK SPHENOINPUTS
66 1 # Two-Scale Matching
67 1 # effective Higgs mass calculation

The two-loop corrections in the two-scale approach are included by matching pole masses, so in
principle include some subleading log effects and should be used with caution: new technical
results are needed to improve this!
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Two-loop Higgs mass computation in general theories

• Expressions exist for the two-loop effective potential [Martin, ’01], tadpoles [MDG,
Nickel, Staub, ’15], and scalar self-energies [Martin, ’03] in Landau gauge.

• The scalar self-energies are known up to O(g2)→ appropriate for neutral Higgs
“gaugeless limit” where broken gauge couplings are set to zero.

• A set of loop functions is known, and available in TSIL→ evaluated for general
momenta by solving differential equations.

• However, evaluation of these is slow, in particular for general theories. So a useful
approximation is the “effective potential limit” of p2 = 0→ loop functions become
orders of magnitude faster to evaluate.

• A general solution to the technical problem of the “Goldstone Boson Catastrophe” due to
massless Goldstones in the Landau gauge was presented in [Braathen, MDG, ’16]→
implementation to appear soon!

• ... this will also make it possible to study two-loop Higgs mass corrections in non-SUSY
models.
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The Goldstone Boson Catastrophe
The Goldstone Boson Catastrophe was noticed in the MSSM electroweak corrections, the
THDM – and the Standard Model, where it was studied by [Martin, ’14], [Elias-Miro, Espinosa,
Konstandin, ’14]!
• Consider for simplicity the Abelian Goldstone Model of one complex scalar
Φ = 1√

2
(v+h+ iG) and tree-level potential

V = µ2|Φ|2 + λ|Φ|4.

• At tree level, the tadpole equation gives µ2 + λv2 = 0, and the masses are
m2
G = µ2 + λv2,M2

h = µ2 + 3λv2.
• But we usem2

G ≡ µ2 + λv2 to calculate loops, and once we include loop corrections
we have

0 = µ2 + λv2 +
∂∆V

∂v

• ... hencem2
G = O(1− loop) and is of indefinite sign!

• In fact, at two loops we find (withA(x) ≡ x(logx/Q2 − 1))

0 =m2
Gv+
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16π2

[
3A(m2
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︸ ︷︷ ︸
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+
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(162)2
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h
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]
+

regular form2
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· · ·︸ ︷︷ ︸
2-loop

The proposed solution was resummation of (a subset of) the Goldstone diagrams.
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On-shell scheme

When we want to generalise the approach, it turns out that resummation is very cumbersome.
Instead, in [Braathen, MDG ’16] we saw that we can cure the IR divergences by putting the
Goldstone boson on shell:

(m2
G)

run. ≡ (m2
G)

OS −ΠGG((m
2
G)

OS)

We can do this directly in the tadpole equations – and also the self-energies! So then there
should be no need to take derivatives of couplings ... exactly what we want.
For example, applying the above shift to the one loop tadpole gives a two-loop correction:

∂V

∂v
⊃ λv

16π2
A(m2

G) =
λv

16π2

[
A((m2

G)
OS︸ ︷︷ ︸
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2
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OS) log
(m2

G)
OS

Q2︸ ︷︷ ︸
cancels divergent part

+ ...︸︷︷︸
3−loop

]

We also see thatΠGG((m2
G)

OS) = Πg(0) (at least at this loop order) automatically!
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Illustration
To see why this works, let us look at the scalar-only case. There are three classes of tadpole
diagrams:

We find that the divergences only come from the TSS and TSSSS topologies, and they
correspond to a Goldstone self-energy as a subdiagram and exactly cancel out against the
on-shell shift:
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Mass diagrams

We also find that we can apply our on-shell scheme to the cancellation of divergences in
self-energies! This seemed hopeless in the former approaches ... We can divide the topologies
into three categories:
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Mass diagram divergences

Again we find that the divergences inm2
G arise from Goldstone boson propagator subdiagrams:

... and once more the one-loop shifts from our on-shell scheme exactly cancel the divergences.
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Generalised effective potential limit

Since we see that there are classes of diagrams that are divergent when the p2 ≡ s 6= 0 and the
Goldstone bosons are on-shell, the obvious response is that we cannot avoid using momentum
dependence – but this is computationally expensive.
Instead, we can expand the self-energies as:

Π
(2)
ij (s) =

log(−s)
s

Π
(2)
−1 l,ij +

1

s
Π

(2)
−1,ij +Π

(2)

l2,ij
log2(−s) +Π(2)

l,ij log(−s) +Π(2)
0,ij

+

∞∑
k=1

Π
(2)
k,ij

sk

k!

If we discard all terms O(s) and higher, we have a generalised effective potential
approximation! We can find closed forms for the singular terms, e.g.

U(0, 0, 0,u) = (logu− 1) log(−s) −
π2

6
+

5

2
− 2 logu−

1

2
log2u+O(s).

This turns out to be a very good approximation, since relevant new physics should be somewhat
heavier than the Higgs mass!
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Impact of Higgs mass corrections
It is usual to take the Higgs “pole” masses and MS couplings as inputs in non-SUSY models (in
e.g. MadGraph etc).

But this ignores that some sets of parameters might not make sense. E.g. consider
Georgi-Machacek model withmh = 125 GeV,m5 = 750 GeV, λ3 = −0.2,λ4 = 0.21:
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See similar issues with the THDM ...
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THDM
For example, suppose we take as inputs in the Two-Higgs-Doublet-Model

mh,mH,mH± ,m2
A,m

2
12, tanα, tanβ

from which we determine λi, i = 1..5. If we enforce the alignment limit of
tanα = −1/ tanβ, we can scan over the other parameters. If we take all of the Heavy Higgs
masses to be 300 GeV and scan only over e.g. mA we find:
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Using the new features

From SARAH 4.12.0 we will have three new features:

Block SPhenoInput #
...

7 0 # Skip two loop masses: True/False
8 3 # Choose two-loop method

150 1 # Use c o n s i s t e n t t a d p o l e s o l u t i o n : True / Fa l se
151 1 # G e n e r a l i s e d e f f e c t i v e p o t e n t i a l c a l c u l a t i o n s : ↪→

True / Fa l se
410 0 # R e g u l a t o r mass
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Conclusions

• We now have the tools to study general models with high
precision.

• Lots of theoretical activity to improve this.
• Challenge will also be to better integrate the flow from L to

experiment and back again!
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