Electroweak Splitting Functions and High Energy Showering

Junmou Chen (U. of Pittsburgh)

MC4BSM at SLAC

arXiv:1611.00788 J.C. T. Han B. Tweedie

May 12, 2017

Collisions in Colliders

Proton-proton scattering: sum of free quarks and gluons scatterings.

QCD Parton Shower and Electroweak Shower

 $\,$ $\,$ For Strong Interactions, when hard scattering scales $\,$ $\,\sim\,$ 50 GeV

$${50\,GeV\over \Lambda_{QCD}\sim 500MeV}>>1$$

Parton shower emerges

ullet In a 100 TeV Collider, hard scattering could scale \sim 10 TeV

$$rac{10\, TeV}{m_W \sim 100\, GeV} \sim rac{50\, GeV}{\Lambda_{QCD} \sim 500\, MeV} >> 1$$

• We are facing a new phenomenon: electroweak parton shower.

Novelties of Electroweak Showering

Novelties of electroweak showering:

- Spontaneous symmetry breaking:
 - massive particle: perturbative shut-off
 - 2 additional degrees of freedom: longitudinal and higgs
- Chirality: Left-handed fermions and right-handed fermions couple differently.
- Neutral bosons interference: γ/Z_T ; h/Z_L
- Weak isospin self-averaging.

Focus today:

- Neutral interference.
- VEV corrections, i.e. the effects of EW symmetry breaking.

Splitting Functions in Unbroken Limit (showering at high energy scale >> v).

5/30

Splitting Functions in Unbroken Limit (Showering at high energy scale >> v).

Splittings with higgs and longitudinal, with $W_L^{\pm} \sim \phi_L^{\pm}$ and $Z_L \sim \phi_0$

Neutral Interference

- Splitting formalism assumes interference to be suppressed.
- Interference can be significant for γ/Z intermediated splittings.
- Solution: matrix. $\frac{d\hat{P}_{ij}}{dk_T^2 dz}$.
 - When i = j, "single state splitting functions".
 - **2** When $i \neq j$, interference terms.

Longitudinal in Broken(Real) Theory: Huge Intereference

Longitudinal vector boson $\epsilon_L \sim \frac{k^{\mu}}{m_W}$, bad energy behavior and huge interference!

Figure: higgs contribution $\propto \frac{m_t m_h}{v^2}$ fixes the problem.

Goldstone Equivalence Gauge

- Hint to the solution: $\epsilon_L \sim \frac{k^{\mu}}{m_W} \rightarrow \phi_W$ in high energy goldstone equivalence theorem.
- Write $\epsilon_L^{\mu}(k) = \frac{k^{\mu}}{m_W} \frac{m_W}{n \cdot k} n^{\mu}$, with $n^{\mu} = (-1, \hat{k})$. So impose gauge-fixing $\frac{1}{2\xi} (n^{\mu} W_{\mu})^2$.
- Consequences:

n · k ≠ 0: k^μ terms are eliminated – power counting is good
 n · n = 0, ε_n ≃ ^{m_W}/_{2E}, VEV corrections to unbroken limit.
 |W_L >= |W_n > +i|φ > --- manifest goldstone equivalence theorem
 Broken theory continuously goes to unbroken theory when v → 0

 $\epsilon_{s=\pm,n}^{\mu}$ are "stripped" out of propagators, and inserted into vertices.

Systematic VEV(mass) corrections

"Scalarizing" k^{μ}/m_{W} enables systematic incorporation of all splittings (up to log) proportional to VEV(masses)

• Massless $f \rightarrow f + V_L$ corresponds to $f \rightarrow f \phi$ according to goldstone equivalence

$$y_f = 0 \rightarrow \text{gives } 0$$

• Contribution comes from VEV correction $V_n \sim \frac{m_V}{E}$: "Effective W approximation".

$$\frac{d\mathcal{P}_{f \to f+V_L}}{dz dk_T^2} \sim \frac{\alpha_2}{2\pi} \frac{1-z}{z} \frac{m_V^2}{k_T^4} \tag{1}$$

• Has been known for years: vector boson fusion observed in LHC

S. Dawson (1985); G. Kane et al. (1984); Chanowitz & Gailard (1984)

Ultra-collinear splitting

There are characteristically new channels in the broken phase: "Ultra collinear": $\frac{v^2}{k_T^2} \frac{dk_T^2}{k_T^2} \sim (1 - \frac{v^2}{Q^2})$ $k_T^2 > m_W^2$, it shuts off; $k_T^2 < m_W^2$, flattens out! The DPFs for W_L thus don't run at leading log: "Bjorken scaling" restored (higher-twist effects)!

New Broken Splittings: ultra-collinear behavior (11 new types)

A whole new set of broken splittings

New Broken Splittings: ultra-collinear behavior (11 new types)

A whole new set of broken splittings

14/30

Estimations of Splitting Rates at 1 TeV and 10 TeV

Process	$\approx \mathcal{P}(E)$ (leading-log term)	$\mathcal{P}(1 \text{ TeV})$	$\mathcal{P}(10 \text{ TeV})$
$q \rightarrow V_T q^{(\prime)}$ (CL+IR)	$(3 \times 10^{-3}) \left[\log \frac{E}{m_W} \right]^2$	1.6%	7%
$q ightarrow V_L q^{(\prime)} ~~({ m UC+IR})$	$(2 \times 10^{-3}) \log \frac{\ddot{E}}{m_W}$	0.4%	1.1%
$t_R \to W_L^+ b_L$ (CL)	$(8 \times 10^{-3}) \log \frac{E}{m_{W}}$	2.5%	4%
$t_R \to W_T^+ b_L (\mathrm{UC})$	(6×10^{-3}) "	0.6%	0.6%
$V_T \rightarrow V_T V_T$ (CL+IR)	$(0.015) \left[\log \frac{E}{m_W} \right]^2$	7%	34%
$V_T \rightarrow V_L V_T ~(\mathrm{UC+IR})$	$(0.014)\log \frac{E}{m_W}$	2.7%	7%
$V_T ightarrow f ar{f}~~{ m (CL)}$	$(0.02)\log rac{E^W}{m_W}$	5%	10%
$V_L ightarrow V_T h ~({ m CL+IR})$	$(2 \times 10^{-3}) \left[\log \frac{E}{m_W} \right]^2$	0.8%	4%
$V_L ightarrow V_L h ~~({ m UC+IR})$	$(2 \times 10^{-3}) \log \frac{E}{m_W}$	0.5%	1%

- Double log > single log.
- "Color" factor $C_A(adjoint) > C_F(fundamental)$: biggest from gauge-triple splitting

"Weak jets": EW Showering with Multiple Gauge Bosons

Top decay & shower

Figure: a) Splitting corrections to "tail" of top decay; b) interplay of multiple elements of top showering: yukawa (ϕ) & gauge coupling (W_n); helicity conserving & flipping.

Neutral boson interference: γ/Z_T initiated splittings

Figure: Left: LH electron source, constructive interference;

Right: RH electron source, mainly B_0 intermediated, destructive. More transparent in B_0/W_0 basis.

Collimated higgses

Figure: $h \rightarrow hh$, rare but interesting.

Summary

- With the increase of energy scale in colliders, we are facing a new phenomenon of EW shower.
- EW sector presents rich physics
- With the help of a new gauge (GEG), we are able to calculate all the EW (collinear log) splitting functions.
 - Unbroken limit: analogue to QCD
 - Ø Broken: systematic VEV corrections ultra-collinear splittings
- We incorporate EW showering into a Monte Carlo program
 - More complete
 - Ø More accurate in implementation
- Looking forward to seeing them in real world! (and in your programs).

Thank you!

New Broken Splittings: ultra-collinear behavior

A whole new set of broken splittings

"Weak jets": EW Showering with Multiple Gauge Bosons

EW Showering with Multiple Gauge Bosons

Figure: O(10%) suppression for every additional boson radiation; Back reaction & angular veto: more precisely (comparing with Pythia 8) taking care of phase space.

۲

Implementation and New Phenomenon: EW PDF

- At high energy, EW particles "show up" in the initial beams, i.e. EW PDFs.
- A useful intermediate concept is luminosities, with which the total cross section could be written as,

$$\sigma_{PP}(V_1 V_2 \to X) = \int_{\tau_{\text{low}}}^{\tau_{\text{high}}} d\tau \, \frac{d\mathcal{L}_{V_1 V_2}}{d\tau} \, \hat{\sigma}(V_1 V_2 \to \hat{X}_{\tau}) \,, \quad (2)$$

$$\frac{d\mathcal{L}_{V_1V_2}}{d\tau} \simeq \frac{2}{(\delta_{V_1V_2}+1)} \int_{\tau}^{1} \frac{d\xi}{\xi} \int_{\tau/\xi}^{1} \frac{dz_1}{z_1} \int_{\tau/\xi/z_1}^{1} \frac{dz_2}{z_2} \times \\ \sum_{q_1,q_2} f_{V_1 \in q_1}(z_1) f_{V_2 \in q_2}(z_2) f_{q_1 \in P}(\xi) f_{q_2 \in P}\left(\frac{\tau}{\xi z_1 z_2}\right) (3)$$

More on neutral boson interference

Implementation and New Phenomenon: h/Z_L and higgs

Figure: (a) h/Z_L interference, usually maximal. More transparent in H_0/H_0^* basis (b) $h \rightarrow hh$, rare but interesting.

EW Showering Effects on New Physics

Figure: Showered events from 20 TeV W'^+ decays. Invariant mass more sharply peaked for multiple splittings.

Isospin self-averaging & Combining QCD effects

Figure: Showered events from 20 TeV W'^+ decays. (a) $W'^+ \rightarrow t_L \bar{b}_R$, full EW shower, and (b) combining EW and QCD showering.