			Summary	Backup
0 000000	0 0000	000 00 0000		

Improving mass measurement in cascade decay with Voronoi tessellations

Yuan-Pao Yang

University of Texas at Austin

Based on: 1611.04487, 1606.02721 with D. Debnath, J. S. Gainer, C. Kilic, D. Kim, and K. T. Matchev

MC4BSM, 2017

Yuan-Pao Yang

Improving mass measurement in cascade decay with Voronoi tessellations

University of Texas at Austin

	What is Voronoi Tessellation		Summary	Backup
0 000000	0 0000	000 00 0000		

Outline

- Review
- Motivation
- 2 What is Voronoi Tessellation
 - Definition
 - Examples

3 Results

- Toy model
- Phase Space
- Realistic Problem

Yuan-Pao Yang

University of Texas at Austin

Introduction			Summary	Backup
0 000000	0 0000	000 00 0000		

Outline

- Review
- Motivation
- 2 What is Voronoi Tessellation
 - Definition
 - Examples

3 Results

- Toy model
- Phase Space
- Realistic Problem

Yuan-Pao Yang

0	000	
	00000	

Review

Appendix to Matt's talk...

From 1512.02222 (Kim, Matchev, Park)

- "2+2+2" topology
- 3-D phase space (m²₁₂, m²₁₃, m²₂₃)
- Enhancement on the boundary

University of Texas at Austin

Yuan-Pao Yang

Introduction			Summary	Backup
o ●ooooo	0 0000	000 00 0000		
Motivation				

Why we need boundary

We want to do a realistic mass measurement!

- "2+2+2" topology!
- Traditional way
 - $\blacksquare m_{j\ell_n}^{max}, m_{j\ell_f}^{max}, m_{\ell\ell}^{max}, m_{j\ell\ell}^{max}$
 - 4 unknowns, 4 equations
- Combinatorial problem
 - Cannot tell ℓ_n and ℓ_f
 - $\blacksquare m_{j\ell(hi)} \equiv max\{m_{j\ell_n}, m_{j\ell_f}\}$
 - $\blacksquare m_{j\ell(lo)} \equiv min\{m_{j\ell_n}, m_{j\ell_f}\}$
 - $\blacksquare m_{\ell\ell}^{max}, m_{j\ell\ell}^{max}, m_{j\ell(hi)}^{max}, m_{j\ell(lo)}^{max}$
 - 4 unknowns, 4 equations, again
- What goes wrong with classical method?

Yuan-Pao Yang

University of Texas at Austin

Introduction ○ ○●○○○○	What is Voronoi Tessellation 0 0000	Results 000 00 0000	
Motivation			

Why we need boundary

- Piecewise-defined formulae!
- In (2,3), (3,1), (3,2):
 - - 4 unknowns, 3 equations
 - Classical method doesn't work!

Study point	<i>P</i> ₃₂	<i>P</i> ₃₁	
m_A (GeV)	126.5	5000.0	
m_B (GeV)	282.8	5207.4	
m_C (GeV)	447.2	5324.2	
m_D (GeV)	500.0	5372.1	
$m_{\ell\ell}^{max}$ (GeV)	309.8		
$m_{j\ell\ell}^{max}$ (GeV)	368.8		
$m_{j\ell(hi)}^{max}$ (GeV)	149.1		
$m_{j\ell(lo)}^{max}$ (GeV)	20	0.0	

■ For a set of given edge → 1-parameter family!

Yuan-Pao Yang

University of Texas at Austin

Introduction ○ ○○●○○○	What is Voronoi Tessellation o oooo	Results 000 00 0000	
Motivation			

Why we need boundary edges and end-points formulae

 $(m_{II}^{max})^2 = \frac{m_D^2 R_{CD} (1 - R_{BC}) (1 - R_{AB})}{m_D^2 R_{CD} (1 - R_{BC}) (1 - R_{AB})}$

$$\begin{pmatrix} m_{ff}^{max} \end{pmatrix}^{2} = \begin{cases} m_{D}^{2} (1 - R_{CD})(1 - R_{AC}), & R_{CD} < R_{AC}, & case (1, -) \\ m_{D}^{2} (1 - R_{BC})(1 - R_{AB}R_{CD}), & R_{BC} < R_{AB}R_{CD}, & case (2, -) \\ m_{D}^{2} (1 - R_{CD})(1 - R_{AB}R_{CD}), & R_{AB} < R_{BD}, & case (2, -) \\ m_{D}^{2} (1 - \sqrt{R_{AD}})^{2}, & otherwise, & case (4, -) \\ m_{D}^{2} (1 - \sqrt{R_{AD}})^{2}, & otherwise, & case (4, -) \\ m_{D}^{2} (1 - R_{CD})(1 - R_{AB})(2 - R_{AB})^{-1}, & R_{AB} < R_{BC} < (2 - R_{AB})^{-1} < R_{BC} < 1, & case (-, 1) \\ m_{D}^{2} (1 - R_{CD})(1 - R_{AB})(2 - R_{AB})^{-1}, & R_{AB} < R_{BC} < (2 - R_{AB})^{-1}, & case (-, 2) \\ m_{D}^{2} (1 - R_{CD})(1 - R_{AB})(2 - R_{AB})^{-1}, & 0 < R_{BC} < R_{AB}, & case (-, 3) \\ \end{cases}$$

From 0903.4371 (Burns, Matchev, Park)

University of Texas at Austin

 $R_{BC} = R_{CD} (= 0.3)$

Yuan-Pao Yang

Introduction 0 000000	What is Voronoi Tessellation o oooo	Results 000 00 0000	
Motivation			

Why we need boundary

The 1-parameter family

For case of $(m_{j\ell\ell}^{max})^2 = (m_{\ell\ell}^{max})^2 + (m_{j\ell(hi)}^{max})^2$, the best thing we can do is to parametrize this one-parameter family as:

$$\begin{array}{l} m_{D} = m_{D}(m_{A}; m_{\ell\ell}^{max}, m_{j\ell\ell}^{max}, m_{j\ell\ell(lo)}^{max}, m_{C}^{max}, m_{\ell\ell(lo)}^{max}, m_{\ell\ell}^{max}, m_{j\ell\ell(lo)}^{max}, m_{B}^{max}, m_{\ell\ell}^{max}, m_{j\ell\ell(lo)}^{max}, m_{j\ell(lo)}^{max}, m_{J\ell$$

Yuan-Pao Yang

University of Texas at Austin

Introduction	What is Voronoi Tessellation		Summary	Backup
0 0000●0	0 0000	000 00 0000		

Motivation

Why we need boundary

The 1-parameter family

Where \tilde{m}_A is

- 100 GeV
- 126.5 GeV*
- 173 GeV
- **500** GeV
- 2000 GeV
- 4000 GeV

Yuan-Pao Yang

University of Texas at Austin

Introduction ○ ○○○○○●	What is Voronoi Tessellation o oooo	Results 000 00 0000	
Motivation			

How we get the boundary

- Disadvantage of likelihood method:
 - it relies on interior information, *i.e.* matrix element.
 - background (mainly tt
) events populates outside the signal boundary
- Let's try the boundary enhancement!
- Voronoi tessellation partitions the phase space into cells
 - Each point gets a cell
 - Cells have geometry properties:
 - volume
 - neighbor
 - And many others!
 - They are helpful for boundary determination!

Yuan-Pao Yang

	What is Voronoi Tessellation		Summary	Backup
0 000000	0 0000	000 00 0000		

Outline

- Review
- Motivation

2 What is Voronoi Tessellation

- Definition
- Examples

3 Results

- Toy model
- Phase Space
- Realistic Problem

Yuan-Pao Yang

University of Texas at Austin

Introduction 0 000000	What is Voronoi Tessellation • • •	Results 000 00 0000	
Definition			
Definition Optional Subtitle			

"The Voronoi diagram for a set of points in a given space \mathbb{R}^d is the partitioning of that space into regions such that all locations within any one region are closer to the generating point than to any other."

From Voro Wiki

Introduction 0 000000	What is Voronoi Tessellation ○ ●000	Results 000 00 0000	
Examples			

Bay Area Airports

Yuan-Pao Yang

University of Texas at Austin

Introduction 0 000000	What is Voronoi Tessellation ○ ○●○○	Results 000 00 0000	
Examples			

Bay Area Airports with Voronoi

Yuan-Pao Yang

University of Texas at Austin

Introduction 0 000000	What is Voronoi Tessellation ○ ○○●○	Results 000 00 0000	
Examples			

Yuan-Pao Yang

University of Texas at Austin

Introduction 0 000000	What is Voronoi Tessellation ○ ○○○●	Results 000 00 0000	
Examples			
Box			

Yuan-Pao Yang

with Vonoroi

University of Texas at Austin

		Results	Summary	Backup
0 000000	0 0000	000 00 0000		

Outline

- Review
- Motivation
- 2 What is Voronoi Tessellation
 - Definition
 - Examples

3 Results

- Toy model
- Phase Space
- Realistic Problem

Yuan-Pao Yang

Introduction 0 000000	What is Voronoi Tessellation o 0000	Results ●00 ○0	
T		0000	

What do we want in the toy model?

Toy Background

Uniform!

University of Texas at Austin

Yuan-Pao Yang

		Results	Summary	Backup
0 000000	0 0000	000 00 0000		

Toy model

Geometry Properties

- No. of neighbors
- volume

Yuan-Pao Yang

isoperimetric q:

 $\frac{\text{volume}}{(\text{surface area})^{3/2}}$

relative std:

 $\frac{\rm std \ of \ neighbor's \ volume}{\rm average \ of \ neighbor's \ volume}$

Introduction 0 000000	What is Voronoi Tessellation 0 0000	Results 00● 00 0000	
- II			

Toy model

Geometry Properties

Yuan-Pao Yang

University of Texas at Austin

Introduction o oooooo	What is Voronoi Tessellation 0 0000	Results ○○○ ●○ ○○○○	
Dhane Casas			

Simple Case

Yuan-Pao Yang

University of Texas at Austin

		Results	Summary	Backup
000000	0 0000	000 00 0000		

Phase Space

With Combinatorics

Yuan-Pao Yang

University of Texas at Austin

Introduction o oooooo	What is Voronoi Tessellation o oooo	Results ○○○ ●○○○	

Realistic Problem

Review of the problem

Study Case: $(m_A, m_B, m_C, m_D) = (126.5, 282.8, 447.2, 500)$ GeV

- Inside (3,2) region $((m_{\ell\ell}^{max})^2 + (m_{j\ell(hi)}^{max})^2 = (m_{j\ell\ell}^{max})^2)$
- Cannot solve the 4 equations after measuring the 4 edges (4 unknowns, 3 ind. equations)
- Can express as (m̃_A, m̃_B(m̃_A), m̃_C(m̃_A), m̃_D(m̃_A)) 1-parameter family

Yuan-Pao Yang

University of Texas at Austin

Introduction o oooooo	What is Voronoi Tessellation o oooo	Results	
Poplictic Problem		0000	

Scan the 1-parameter family

- **1** We can explore the 1-parameter family by varying \tilde{m}_A
- 2 For a given \tilde{m}_A , we can know the cells laying on the boundary
- 3 We can calculate the average RSD per unit area of boundary cells
- 4 Expect the true spectrum will maximize that average

	What is Voronoi Tessellation	Results	Summary	Backup
0 000000	0 0000	000		

Realistic Problem

Scan the 1-D family

NS	3000				
mA	126.5				
NB	3000 4000 5000 6000				
m _A	116	125	125	125	

Yuan-Pao Yang

University of Texas at Austin

Introduction 0 000000	What is Voronoi Tessellation 0 0000	Results 000 000●	
Realistic Problem			

Yuan-Pao Yang

Scan the 1-D family

With detector effect

NS	3000				
m _A	126.5				
NB	3000 4000 5000 6000				
m _A	107	107	116	116	

University of Texas at Austin

			Summary	Backup
0 000000	0 0000	000 00 0000		

- Have done...
 - With Voronoi tessellation, determined the boundary of "2+2+2" topology signal under tt background, combinatorics, and detector effect.
- Potential extension:
 - different topology
 - discovery!

University of Texas at Austin

Yuan-Pao Yang

Introduction 0 000000	What is Voronoi Tessellation o oooo	Results 000 00 0000	Backup

Backup

Yuan-Pao Yang

University of Texas at Austin

Introduction 0 000000	What is Voronoi Tessellation o oooo	Results 000 00 0000	Backup

Energy resolution

Hadronic calorimeter resolution

$$\frac{\sigma}{E} = \left(\frac{1}{\sqrt{E}}\right)$$

Eletromagnetic calorimeter resolution

$$\left(\frac{\sigma}{E}\right)^2 = \left(\frac{0.0363}{\sqrt{E}}\right)^2 + \left(\frac{0.124}{E}\right)^2 + 0.0026^2$$

Muon momentum resolution

From "CMS physics: Technical design report," CERN-LHCC-2006-001, CMS-TDR-008-1

Yuan-Pao Yang

University of Texas at Austin