

Dark Matter Phenomenology in the MG5_aMC@NLO framework

Gopolang (Gopi) Mohlabeng with

Mihailo Backovic, K.C. Kong, Antony Martini and Olivier Mattelaer

Evidence for Dark Matter

We have many hints DM exist, but no direct evidence!

Rotational velocities of spiral galaxies

Velocity dispersions, CMB maps, N-body simulations

The (Inconvenient) Truth about DM

If particle DM exists, what do we know about it?

Dark Matter:

```
    1. Mass = ???
    2. Spin = ???
    3. Decays = ???
    4. Interactions = Gravity, ???
    5. Elementary = ???
```

- We have no sense of where new physics is hiding

DM models
alone span many
orders of magnitude
in energy scales

- We have no sense of where new physics is hiding

DM Detection

- Astrophysics and Cosmology: $\longrightarrow \chi\chi \to {\rm all}$

- Indirect Detection: $\chi \chi \to e^+ e^-, p\bar{p}, \gamma \gamma$

- Colliders: $pp \to \chi \chi + j, Z, \gamma...$

DM Detection

- Astrophysics and Cosmology: $\longrightarrow \chi\chi \to {\rm all}$

- Direct Detection:

 $p/n \chi \rightarrow p/n \chi$

- Indirect Detection:

 $\chi\chi\to e^+e^-,\,p\bar{p},\,\gamma\gamma$

Colliders:

 $pp \rightarrow \chi \chi + j, Z, \gamma...$

Gamma rays (x* decay)

DM Detection

- Astrophysics and Cosmology: $\longrightarrow \chi\chi \to \text{all}$

Direct Detection

Complementarity is important because:

- a) In case we don't observe DM, it allows us to efficiently "carve out" the remaining possible DM scenarios.
- b) In case we **do observe DM**, it allows us to determine the properties of DM more accurately.

Dark Matter Complementarity

- Direct detection experiments have placed constraints on DM scattering off nuclei.

Mostly sensitive to EW scale

Phys.Dark Univ. 4 (2014) 92-97

Dark matter direct detection experiments

Elastic scattering cross section with nucleus (m_T :nucleus mass, $n_{p/n}$:# of proton and neutron)

$$\sigma = \frac{4}{\pi} \left(\frac{m_{\tilde{\chi}^0} m_T}{m_{\tilde{\chi}^0} + m_T} \right)^2 \left[\left(\frac{n_p f_p + n_n f_n}{\text{SI}} \right)^2 + 4 \frac{J+1}{J} \left(\frac{a_p \langle S_p \rangle + a_n \langle S_n \rangle}{\text{SD}} \right)^2 \right]$$

The SI cross section is enhanced for large atomic number nucleus.

Based on arXiv: 1504.00915v1

- LHC experiments can probe different scales.

Dark Matter Complementarity

- Recently LHC Analysis provided complementary information to underground experiments.

Complementarity studies require powerful simulation tools

BSM tools in LHC era

FeynRules, LanHEP...

SusyHIT, ISAJET (for SUSY)...

MadGraph, Sherpa, CalcHEP, CompHEP... / Pythia, HERWIG, Whizard...

BSM model

Model files

Spectrum/decay

Process Generation
/ Showering &
Hadronization

linked very well for many tools!

Already

PGS, Delphes, GEANT...

?

Detector sim.

Cosmological

Signatures

MadAnalysis, Checkmate, ATOM, Fastlim

. . . .

Astrophysical Signatures

What about these?!

BSM tools in LHC era

BSM model FeynRules, LanHEP... **Already** Model files linked very SusyHIT, ISAJET (for SUSY)... A new generation of tools necessary for to efficiently link all the complementary approaches MadGraph, Sherpa, **Proces Generation** CalcHEP, CompHEP... / Showering & / Pythia, HERWIG, PGS, Delphes, Hadronization Whizard... GEANT... Detector sim. MadAnalysis, Checkmate, ATOM, **Fastlim** Astrophysical Signatures Cosmological Signatures What about these?!

MadDM emerged as an effort to link:

- DM collider searches, with
- early cosmology signatures (relic density) and
- direct/indirect detection.

Goal is to allow both Experimentalists and Theorists to calculate signatures of DM models at all interfaces with click of a button.

User friendly architecture of MadGraph5_aMC@NLO provides ideal framework for MadDM development.

MadDM emerged as an effort to link:

- DM collider searches, with
- early cosmology signatures (relic density) and
- direct/indirect detection.

Version 1.0 of MadDM focused on calculations of **DM relic density** (in a generic UFO model).

Version 2.0 of MadDM extended the functionality to DM direct and directional detection.

Version 3.0 DM Indirect detection. (soon!)

Validations (mUED):

KK photon

$$\Delta = \frac{m_{q_1} - m_{\gamma_1}}{m_{\gamma_1}}$$

Arrenberg et al, arXiv:1307.6581

Excellent agreement between MadDM and literature!

We also validated the calculation of SI and SD cross sections in a wide range of simplified models.

Validations (Higgs portal, scalar DM)

We find good agreement in recoil rates with micrOMEGAs.

Assuming a 1pb DM-nucleon scattering cross section

- MadDM has already been used by the CMS experiment

MadDM Status, MC4BSM 2015

MadDM Status, NOW

Integration with MG5_aMC@NLO

- MadDM is now a MG5 plugin (took a long time and required some structural changes both in MadDM and MG5_aMC@NLO)

This means that you can install it using the MG5 interface

MG5_aMC> install maddm

It also means that MadDM now inherits the features of MG5

★Automatic resonance width computation

DECAY 54 AUTO # WYO (set up in param_card.dat)

★Integrated parameter scans

54 scan:range(100, 1000, 100) # MYO (set up in param_card.dat)

*Ability to do calculations at NLO / Loop induced!

MadDM Upgrades

- MadDM code now "knows" when/where **resonances** occur in amplitudes (Improves the speed of relic density computation)
- We implemented faster approximate methods for freeze out temperature determination.

We also completely revamped the interface

We still need to finish the astro-physical part for the ID (cosmic ray flux/propagation)!

MadDM upgrades

The result of **launch** feels and looks like a MG5 run:

```
Here is the current status of requested run :
 * Enter the name/number to (de-)activate the corresponding feature
    1. Compute the Relic Density
                                                  = 0N
                                     relic
    2. Compute Direct Detection
                                                  = ON
                                     direct
    3. Compute Directional Detection <u>directional</u> = ON
    4. Compute Indirect Detection <u>indirect</u>
                                                  = ON
 You can also edit the various input card:
 * Enter the name/number to open the editor
 * Enter a path to a file to replace the card
 * Enter set NAME value to change any parameter to the requested value
    4. Edit the model parameters [param]
    5. Edit the MadDM options
                                     [maddm]
```

A standard output:

```
INFO: *** RESULTS ***
        relic density: 8.69e+04 Model excluded (relic not in range [0,0.12])
INFO:
INFO:
                       : 5.00
        x_f
sigmav(xf)
        x f
                       : 1.35e-15 \text{ GeV}^-2 = 5.25e-07 \text{ pb}
INFO:
      sigmaN_SI_p : 2.74e-19 \text{ GeV}^2 = 1.07e-10 \text{ pb}
INFO:
      sigmaN SI n : 2.81e-19 GeV^-2 = 1.09e-10 pb
INFO:
      sigmaN_SD_p : 4.17e-34 GeV^-2 = 1.62e-25 pb
INFO:
      sigmaN_SD_n : 2.01e-33 GeV^-2 = 7.82e-25 pb
INFO:
      Nevents
                       : 1
INFO:
INFO: smearing : 0.00e+00
INFO: Indirect detection cross section at v = 1e-03: 2.33e-09+-4e-12
```


- 2->N annihilation, linking to MadEvent. ←
- Gamma-ray, positron fluxes, DM density profiles.
- Galactic propagation (link to Pythia/Galprop) & halo models/
- Loop induced DM annihilations to photons/electrons/neutrinos.
- Loops for collider and direct detection studies.

eg. Higgs Portal models

- Multicomponent DM: Semi annihilations, Assisted Freeze-out.
- Output in html form just as in current MG5.

Indirect detection

Link to

MG5 aMC

- 2->N annihilat
- Gamma-ray, po
- Galactic propaş
- Loop induced I
- Loops for collimation

KEEP CALM AND WATCH THIS SPACE

IT'S GOING TO BE AWESOME!!

trons/neutrinos.

Link to
MG5 aMC

t halo models

Indirect

detection

@NLO

MORE COMING SOON

- Output in html:

Multicomponer

ted Freeze-out.

Thank you!

BACK UP

Example recoil distributions

People typically calculate dR/dE because this is the quantity dir. detection experiments can measure...

...yet, there are many reasons to consider $dR/dE \, d\cos(\theta)$

MadDM is the first public code to allow for calculations of angular recoil distributions!

Simulation of Detector Effects

- Given the user defined energy and angular resolution, **MadDM can** smear the recoil distributions
- We assume a Gaussian smearing function (this can be easily modified by the user):

$$F(E,\theta) = \int F(E',\theta') \left(\frac{1}{\sigma_E \sqrt{2\pi}} \, e^{-\frac{(E-E')^2}{2\sigma_E^2}} \right) \left(\frac{1}{\sigma_\theta \sqrt{2\pi}} \, e^{-\frac{(\theta-\theta')^2}{2\sigma_\theta^2}} \right) dE' d\theta' \,,$$
 angular smearing

Unsmeared distribution

As a validation we reproduced the LUX exclusion

(calculation fully automated in MadDM)

