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1 Annotated Bibliography

• For general introduction to inference and Bayesian methods, see [1].

• On the comparison of p-values with Bayesian methods for discovery, see
[2].

• On posterior predictive p-values and failures of classical Likelihood Ratio
Tests, see [3].

• On the Bayesian analysis of energy spectra, see [4].

• For a Bayesian analysis of the on/off problem, see [5].

• For details on procedures of setting confidence limits, see [6].

• For a comparison of Feldman & Cousins with Bayesian posterior for the
on/off problem, see [8].
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2 Exercises

2.1 MLE for Poisson counts

An astronomer measures the photon flux from a distant star using a very sensi-
tive instrument that counts single photons. After one minute of observation, the
instrument has collected r̂ photons. One can assume that the photon counts,
r̂, are distributed according to the Poisson distribution. The astronomer wishes
to determine λ, the emission rate of the source.

(i) What is the likelihood function for the measurement? Identify explicitly
what is the unknown parameter and what are the data in the problem.

(ii) If the true rate is λ = 10 photons/minute, what is the probability of
observing r̂ = 15 photons in one minute?

(iii) Find the Maximum Likelihood Estimate for the rate λ (i.e., the number
of photons per minute). What is the maximum likelihood estimate if the
observed number of photons is r̂ = 10?

2.2 Counting experiment – multiple measurements

(i) An experiment counting particles emitted by a radioactive decay measures
r particles per unit time interval. The counts are Poisson distributed. If
λ is the average number of counts per per unit time interval, write down
the appropriate probability distribution function for r.

(ii) Now we seek to determine λ by repeatedly measuring for M times the
number of counts per unit time interval. This series of measurements
yields a sequence of counts r̂ = {r̂1, r̂2, r̂3, ..., r̂M}. Each measurement is
assumed to be independent. Derive the combined likelihood function for
λ, L(λ) = P (r̂|λ), given the measured sequence of counts r̂.

(iii) Use the Maximum Likelihood Principle applied to the the log likelihood
lnL(λ) to show that the Maximum Likelihood estimator for the average
rate λ is just the average of the measured counts, r̂, i.e.

λML =
1

M

M∑
i=1

r̂i .

(iv) By considering the Taylor expansion of lnL(λ) to second order around
λML, derive the Gaussian approximation for the likelihood L(λ) around
the Maximum Likelihood point and show that it can be written as

L(λ) ≈ L0 exp

(
−1

2

M

λML
(λ− λML)2

)
,

where L0 is a normalization constant.
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(v) Compare with the equivalent expression for M Gaussian-distributed mea-
surements to show that the variance σ2 of the Poisson distribution is given
by σ2 = λ.

2.3 On/Off problem

Upon reflection, the astronomer of Problem 2.1 realizes that the photon flux is
the superposition of photons coming from the star plus “background” photons
coming from other faint sources within the field of view of the instrument. The
background rate is supposed to be known, and it is given by λb photons per
minute. This can be estimated e.g. by pointing the telescope away from the
source (the “off” measurement) and measuring the photon counts there, where
the telescope is only picking up background photons. This estimate of the
background comes with an uncertainty, of course, but we’ll ignore this for now.
She then points to the star again, measuring r̂t photons in a time tt (this is the
“on” measurement).

(i) What is her maximum likelihood estimate of the rate λs from the star in
this case? Hint: The total number of photons r̂t is Poisson distributed
with rate λ = λs + λb, where λs is the rate for the star.

(ii) What is the source rate (i.e., the rate for the star) if r̂t = 30, tt = 2 mins,
and λb = 12 photons per minute?

(iii) Is it possible that the measured average rate from the source (i.e., r̂t/tt)
is less than λb? Discuss what happens in this case and comment on the
physicality of this result.

2.4 Feldman & Cousins confidence belt construction

Consider the construction of the confidence intervals using the ordering principle
described by Feldman & Cousins [7].

(i) What is the 90% Feldman & Cousins confidence interval for the signal
rate, if the (known) background is b = 4.0 and you have measured n = 5
counts? (Hint: use the tables at the back of the paper!)

(ii) If the background rate is b = 5.0, how many counts do you need to measure
before you can get a 2-sided confidence interval (away from 0) using the
Feldman & Cousins construction? (Hint: use the tables at the back of the
paper!)

(iii) Experiment 1 expects b = 0.0 background counts, and measures n = 0
counts. Experiment 2 has a larger expected background, b = 10.0, and
also measures n = 0 counts. What is the Feldman & Cousins 90% upper
limit on the signal mean in each case? Comment on whether this makes
sense.

(iv) Write a code to reproduce Figure 7 in [7], showing the 90% confidence
belt for the Poisson case, with a known background rate b = 3.0.
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2.5 Bayesian reasoning: Warm-up

A cohort chemistry undergraduates are screened for a dangerous medical con-
dition called Bacillum Bayesianum (BB). The incidence of the condition in the
population (i.e., the probability that a randomly selected person has the disease)
is estimated at about 1%. If the person has BB, the test returns positive 95% of
the time. There is also a known 5% rate of false positives, i.e. the test returning
positive even if the person is free from BB. One of your friends takes the test
and it comes back positive. Here we examine whether your friend should be
worried about her health.

(i) Translate the information above in suitably defined probabilities. The two
relevant propositions here are whether the test returns positive (denote
this with a + symbol) and whether the person is actually sick (denote this
with the symbol BB = 1. Denote the case when the person is healthy as
BB = 0).

(ii) Compute the conditional probability that your friend is sick, knowing that
she has tested positive, i.e., find P (BB = 1|+).

(iii) Imagine screening the general population for a very rare disease, whose
incidence in the population is 10−6 (i.e., one person in a million has the
disease on average, i.e. P (BB = 1) = 10−6). What should the reliability
of the test (i.e., P (+|BB = 1)) be if we want to make sure that the
probability of actually having the disease after testing positive is at least
99%? Assume first that the false positive rate P (+|BB = 0) (i.e, the
probability of testing positive while healthy), is 5% as in part (a). What
can you conclude about the feasibility of such a test?

2.6 On/Off Problem: Bayesian version

We revisit the On/Off problem but this time from a Bayesian perspective, which
fully and automatically accounts for uncertainty in the background rate esti-
mate.

We consider first the “off” measurement, which collects noff photons in a
time toff.

(i) Assuming a uniform prior on the background rate b, find the posterior
distribution for b from the off measurement.

(ii) Now consider the “on” measurement, which collects a number non of pho-
tons during a time ton. This is a measurement for the combined rate s+ b
(where s denotes the source rate). Write down the likelihood function for
this measurement.

(iii) Assume again a uniform prior on s, and a prior on b given by the pos-
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terior of the “off” measurement1, find the (unnormalized) joint posterior
distribution for s, b, and show that is is given by the expression:

p(s, b|non, ton) ∝ (s+ b)nonbnoff exp(−ston) exp(−b(ton + toff)). (1)

(iv) Compute analytically the marginal posterior pdf for the signal, s, by in-
tegrating the joint posterior over b, i.e.

p(s|non, ton) =

∫ ∞
0

p(s, b|non, ton)db. (2)

Hint: use the binomial expansion: (s+ b)non =
∑non

k=0 s
non−kbk.

(v) Write a code to perform MCMC sampling of the joint posterior for s, b
(in Python you may want to use the PyMC package). Plot equal-weight
samples from the posterior in parameter space for non = 10, ton = 2,
noff = 3, ton = 1. Marginalize over b numerically and compare the resulting
numerical estimate with the analytical result above.
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