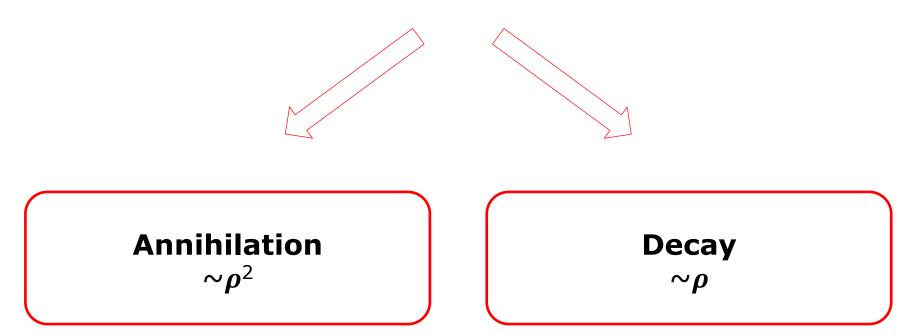



Smoking guns in the gamma-ray sky

Simone Ammazzalorso - Miguel Garcia Folgado - Michael Korsmeier Maxim Laletin - Axel Widmark - Chao Zhang



What would make for a convincing signal of particle dark matter in the gamma ray sky?

Gamma rays from DM

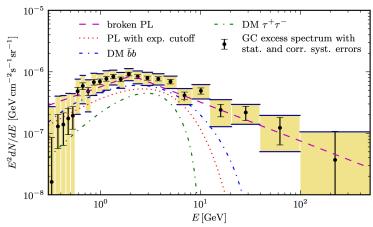
Different search strategies are needed

Where to look for DM annihilation?

J-factors

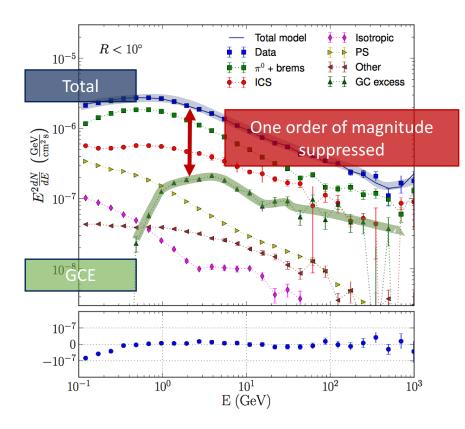
$$\Phi_{\gamma} = \frac{1}{4\pi} \frac{\langle \sigma v \rangle}{s M_{\chi}^2} \sum_{i} Br_i \frac{dN_{\gamma}^i}{dE} \times J \qquad \qquad \mathbf{J}(D, \Delta\Omega) = \int_{\Delta\Omega} \int_{\mathrm{l.o.s.}} \rho_{\mathrm{DM}}^2(r(s)) \mathrm{d}s \mathrm{d}\Delta\Omega'$$

Galactic center $J = 10^{22} - 10^{23}$


(in units GeV²/cm⁵)

Galaxy clusters 1 = 10¹⁵ - 10¹⁹

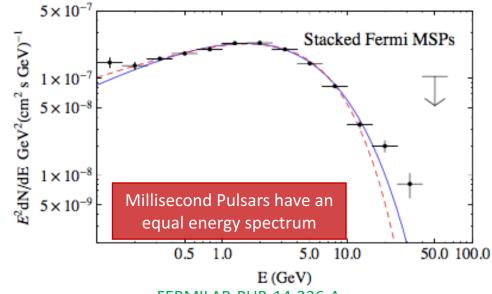
Galactic center: How to search for DM?


At the example of the observed gamma-ray Galactic center excess at about 2 GeV.

Calore+ 2014 Background model systematics for the Fermi GeV excess

Determination through a template fit:

- Hadronic interactions and bremsstrahlung
- Inverse Compton scattering
- GC excess
- Isotropic emission
- Point sources
- Extended sources, Cygnus, LMC
- Loop I
- · Sun and Moon templates
- (Fermi bubbles)

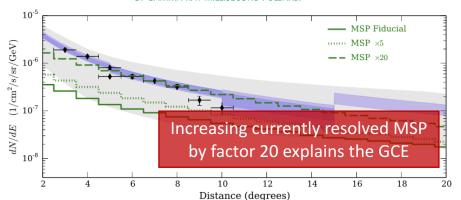


Fermi-LAT 2017 THE FermI GALACTIC CENTER GEV EXCESS AND IMPLICATIONS FOR DARK MATTER

Galactic center: What's the difficulty?

Problem

- Many gamma-ray sources at the center
- Astrophysical background is not well known
- Signal to background ratio is low
 DM and astrophysics might easily be confused e.g.



FERMILAB-PUB-14-236-A: A

NEWDETERMINATION OF THE SPECTRA AND LUMINOSITY FUNCTION
OF GAMMA-RAY MILLISECOND PULSARS.

Approach

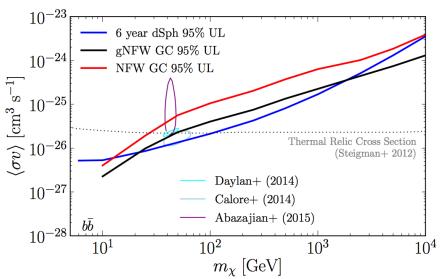
 Identification of point sources in the Galactic center, e.g. with X-rays

O'LEARY+ 2016 YOUNG AND MILLISECOND PULSAR DEV GAMMA-RAY FLUXES FROM THE GALACTIC CENTER AND BEYOND.

Dwarf spheroidals: The perfect place to search?

24 dSphs around the Milky Way

- 9 "classical" (discovered in previous century)
- 15 "ultra-faint" with very little baryonic matter All of them are devoid of gas

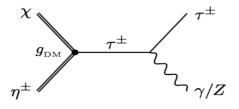

Why to look at dwarfs?

- Galactic center is a the most plentiful source, but suffers from a backgrounds
- Dwarf galaxies are cleaner
- Possible future observation signals are more convincing

Largest systematic uncertainty

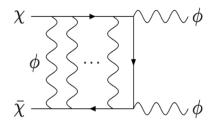
Dark matter density profile

Comparison of DM annihilation sensitivity between Galactic center and dwarfs

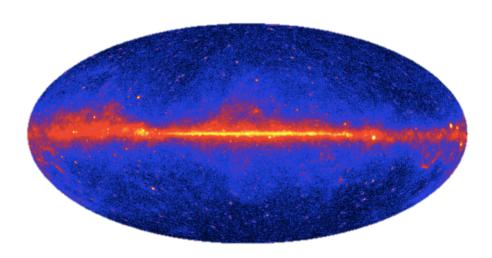


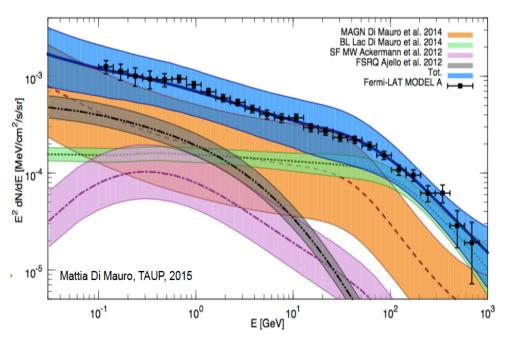
Fermi-LAT THE Fermi GALACTIC CENTER GEV EXCESS AND IMPLICATIONS FOR DARK MATTER

Theory: How to boost annihilation?


Coannihilation

- Thermal production in the early Universe can be affected by other (heavier) dark sector particles
- This changes the annihilation rate
- Boost by several orders of magnitude

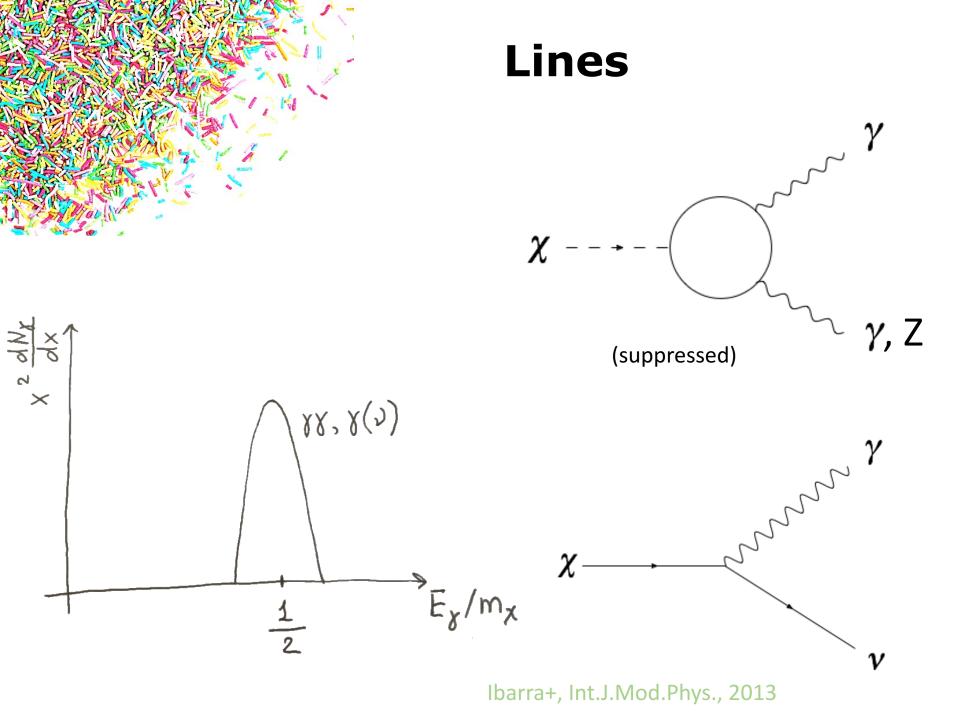

Sommerfeld


- Due to new (BSM) long range forces
- Speculated to boost annihilation by up to 9 orders of magnitude

Where to look for DM decays?

Decaying DM signal provides a more isotropic signal, which can be probed with isotropic gamma-ray background (IGRB)

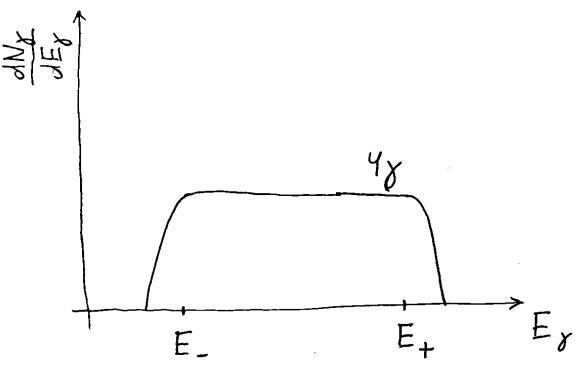
To produce a noticeable contribution above 100 GeV one needs to have DM lifetime of order


$$\tau \sim 10^{28} - 20^{31} \ s$$

Spectral features

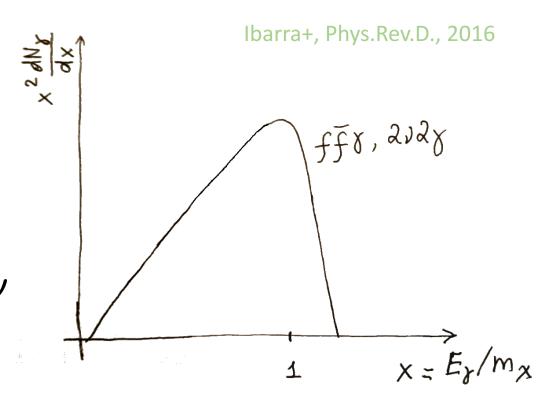
Spectral features can provide a clear smoking gun signature for both annihilating and decaying dark matter

- Lines
- Boxes
- Triangles
- etc.

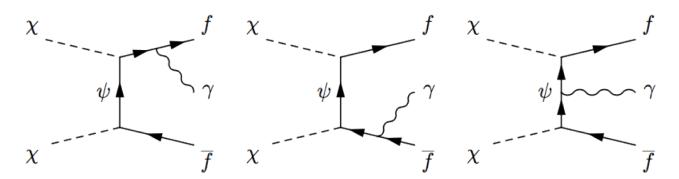


Boxes

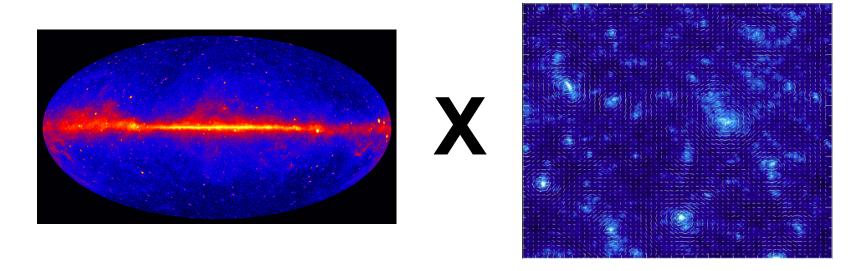
$$\chi\chi \to \phi\phi \to \gamma\gamma\gamma\gamma$$


$$m_{\chi} > m_{\phi}$$

$$E_{\pm}=(m_\chi/2)\left(1\pm\sqrt{1-(m_\phi/m_\chi)^2}
ight)$$
 Ibarra+,


Ibarra+, JCAP, 2012

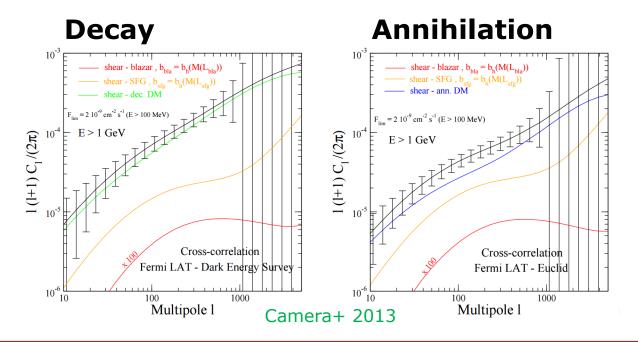
Triangles



$\chi\chi \to \phi\phi \to 2\gamma 2\nu$

or internal bremsstrahlung

Cross correlations: A clever idea to look for DM signals from massive regions


- Visible matter (i.e. clusters) trace DM density
- Any DM signal is expected to be correlated with the mass distribution (cosmic shear, weak lensing, galaxy distribution,...)

Task: Measure and calculate prediction for correlation multipole moments

$$\langle I(\vec{n}_1)I(\vec{n}_2) \rangle \longrightarrow C(\theta) \longrightarrow C_l$$

Cross correlations: Sensitivity prediction

- Excellent sensitivity for annihilation and decay
- Systematic uncertainty due to DM halo modelling

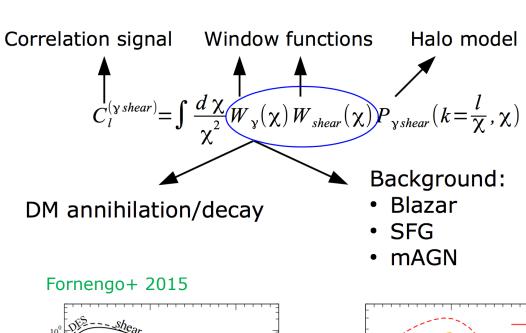
For a 100 GeV DM mass and thermal cross-section the signal is larger that background; this is a smoking gun for detection.

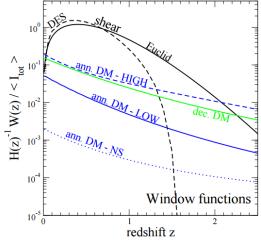
Conclusion

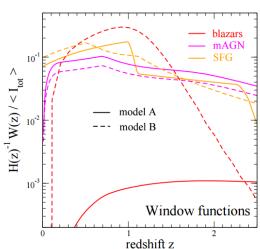
- Annihilating and decaying dark matter scenarios require different strategies:
 - Dwarf spheroidals perfect for annihilating DM
 - ❖ IGRB for decaying DM
- Some models with extended dark sector can provide the boost of DM annihilations.
- Energy spectrum morphology are important for both annihilations and decays and would make a convincing discovery
- Cross-correlations another way of looking for DM in gamma rays
- ➤ Improving angular and energy resolution is crucial for smoking gun signature detection.

Backup

Particle models with coannihilation


year	model	Boost factor in <6v>
1991,K.Greist	LSP+squarks, Nx=2, g2/g1=3 to 18, 6v22=A6v21=A26v11	increase [200,350)
1992, Satoshi Mizuta	Higgsino-Dominant LSPs. H^S,AH $^\pm$ \rightarrow ffbar mediated by the W.	much larger than that of the annihilation
1997, Joakim Edsjo,Paolo Gondolo	Heavy higgsino-like neutralinos.	increase [2,10)
	Models with $ \mu \sim \text{M1} $. if lightest neutralino is more higgsino-like or gaugino-like.	increase [1,100)
2006,Kyoungchul Kong et al.	Kaluza-Klein Dark Matter with Universal Extra Dimensions.	reduce the effective annihilation cross- section, and therefore increase the LKP relic density.
	(lots of work)	
2016, John Ellis et al.	Gluino-neutralino coannihilations.	s channel leading to a smaller gluino annihilation cross section and hence a larger relic density.
2017	EFT/Simplified models of dark matter.	Depending on the mass spectrum and interaction.(increase or decrease)


Particle models with lines


- Gravitinos in R-parity violating vacua (or sneutrino in bilinear R-parity breaking)
- Hidden SU(2) vectors

Ibarra+, Int.J.Mod.Phys., 2013

Cross correlations

