Distinguishing between Dark Matter and pulsar interpretations

of cosmic ray positrons with multi-messenger signals

D. Cichon, Y. Liang, S. Manconi, M. Mendez Isla, F. Panther

04.07.2017

Searching for Dark Matter with cosmic ray e⁺

Our task:

Imagine that the positron flux is measured with $10\,\%$ accuracy up to 5 TeV. A cut-off is measured with an exponential feature, whose characteristic energy is 2 TeV. Is that measurement sufficient to distinguish between a annihilating dark matter origin and a remnant star source? Would other measurements be helpful in the discrimination analysis?

Current measurements...

lacksquare AMS-02: e^+ flux measured up to \sim 600 GeV

$$\quad \ \ \phi_{e^+} \sim E^{-2.97} \ \mbox{for} \ E <$$
 31.8 GeV $(\sim E^{-2.75} \ \mbox{for} \ E >$ 49.3 GeV)

...and what we might see in the future

- Upcoming data up to $\mathcal{O}(10\,\mathrm{TeV})$ by DAMPE and CALET (e^++e^-) arXiv:1706.08453 [astro-ph.IM] Nucl. Instrum. Meth. A **692**, 240 (2012)
- To reach $10\,\%$ accuracy, e^+/p discrimination power at $\mathcal{O}(10^5)$ needed
- $\begin{tabular}{ll} {\bf Potential scenario:} & e^+ excess with \\ {\bf cutoff at } \mathcal{O}(1\,{\rm TeV}) & {\bf measured} \\ \end{tabular}$

e⁺ production and propagation

Pulsar wind nebula and Dark Matter source terms

Pulsar wind nebula (PWN):

$$Q(E) = Q_0^{PSR} \left(\frac{E}{E_0}\right)^{-\gamma_{PSR}} \exp\left(-\frac{E}{E_c^{PSR}}\right)$$

Dark Matter (DM):

$$Q(\vec{x}, E) = \kappa \left\langle \sigma v \right\rangle \left(\frac{\rho(\vec{x})}{M_{\rm DM}} \right)^2 \sum_i \beta_j \frac{dN_e^j}{dE}$$

Pulsar wind nebula and Dark Matter source terms

Pulsar wind nebula (PWN):

$$Q(E) = Q_0^{PSR} \left(\frac{E}{E_0}\right)^{-\gamma_{PSR}} \exp\left(-\frac{E}{E_c^{PSR}}\right)$$

 Single PWN sufficient to describe spectrum

Dark Matter (DM):

Fluxes from Cirelli et al. (PPPC 4 DM ID)

Pulsar wind nebula and Dark Matter source terms

Pulsar wind nebula (PWN):

$$Q(E) = Q_0^{PSR} \left(\frac{E}{E_0}\right)^{-\gamma_{PSR}} \exp\left(-\frac{E}{E_c^{PSR}}\right)$$

 Single PWN sufficient to describe spectrum

Dark Matter (DM):

$$Q(\vec{x},E) = \kappa \left< \sigma v \right> \left(\frac{\rho(\vec{x})}{M_{\rm DM}} \right)^2 \sum_i \beta_j \frac{dN_e^j}{dE}$$

 DM annihilation on its own cannot describe spectrum

Mixed model

JCAP 1605 (2016) no.05, 031

How to test the Dark Matter hypothesis

- Check for compatibility of extracted DM properties with other measurements
 - Measure γ -rays from inverse Compton (IC) scattering and synchrotron radiation
- Look at other potential DM annihilation channels
- Search for possible anisotropies from PWN or dense DM clumps

Correlations with γ -ray measurements

Nucl. Phys. B 821 (2009) 399

- Observed diffuse IC emission from nearby PWN
- Consistent with production efficiency $< 50\,\%$ arXiv:1702.08436 [astro-ph.HE]

Correlations with synchrotron radiation

Phys. Rev. Lett. 107 (2011) 271302

- Example: ARCADE 2 measurement of isotropic radio emission excess
- \blacksquare DM interpretation ruled out when combining with AMS e^+ data Phys. Rev. D $\bf 90$ (2014) no.12, 127302

Consistency of measured annihilation cross-section

Phys. Rept. 636 (2016) 1

Looking for anisotropies

- Experiments like FermiLAT sensitive to arrival direction of cosmic rays
- Searching for anisotropy to confirm PWN interpretation
- Observed anisotropy would rule out DM interpretation JCAP 1502 (2015) no.02, 043

Summary and conclusions

- \bullet e⁺ production in astrophysical sources rules out DM as sole source
- \bullet e⁺ spectrum alone insufficient to determine relative contributions from DM and PWN
- Other messengers needed to discriminate between both cases

