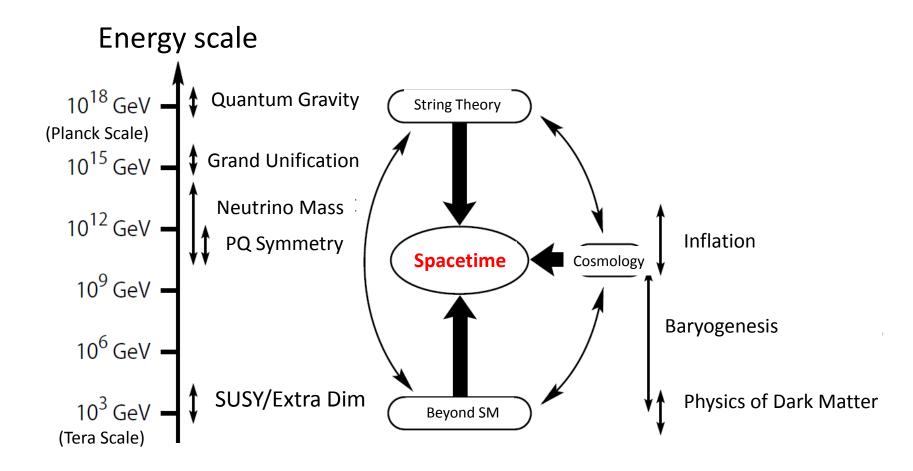
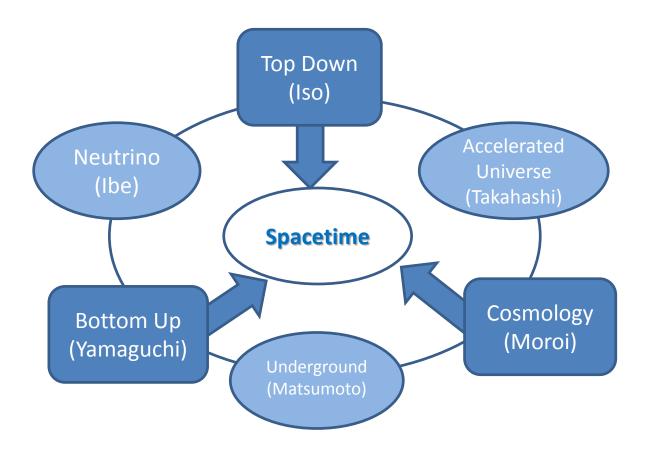
Research Plan of A02 (theory): Beyond SM and Spacetime


Masahiro Yamaguchi (Tohoku University)

Physics in LHC and the Early Universe @University of Tokyo January 9th, 2017


Members of A02

Principal Investigator: Masahiro Yamaguchi (Tohoku) **Co-Investigators** : Takeo Moroi (Tokyo) Satoshi Iso (KEK) Co-Investigators (cooperation): Masahiro Ibe (ICRR) Shigeki Matsumoto (IPMU) Fuminobu Takahashi (Tohoku)

Research Target of A02: Explore New Spacetime Concept

Research Organization

Current Status for BSM

• Discovery of Higgs Boson with 125 GeV mass

 $m_h = 125.36 \pm 0.37 (\text{stat.}) \pm 0.18 (\text{syst.}) \text{ GeV} (\text{ATLAS})$ $m_h = 125.03^{+0.26}_{-0.27} (\text{stat.})^{+0.13}_{-0.15} (\text{syst.}) \text{ GeV} (\text{CMS}).$

Non-discovery of Beyond-Standard-Model (BSM)

Motivations for Supersymmetry

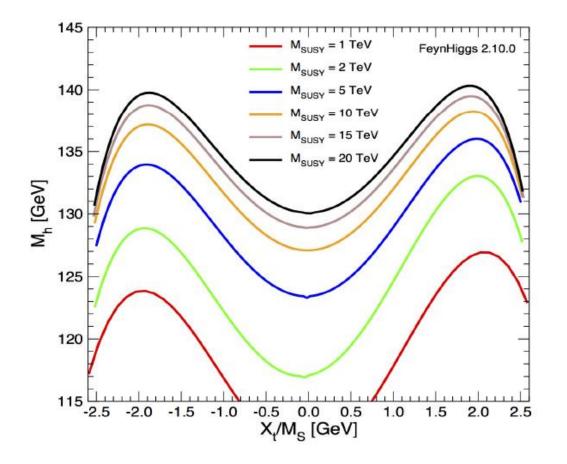
- Unnaturalness of Higgs Sector:
 gauge hierarchy problem/naturalness problem
- Unification of forces: Grand unification
- Muon g-2: possible deviation from SM
- Call for Beyond SM
 - Neutrino masses and mixings
 - Cosmology Connection
 - Dark Matter, Baryogenesis, Dark Energy, Inflation

Higgs Mass in MSSM

In MSSM

SUSY \rightarrow Higgs Self Coupling = gauge coupling mh < mz @tree level (SUSY relation) Inoue et al '85

Large SUSY breaking loop effect can raise the Higgs mass stop-top loops


Okada, MY, Yanagida '91 Haber, Hempfling Ellis, Ridolfi, Zwirner

- 1) large log mstop/mtop
- 2) finite A-term(stop-stop-Higgs coupling) contribution

$$m_0^2 = m_Z^2 + \frac{3m_t^4}{4\pi^2 v^2} \ln\left(\frac{m_{\tilde{t}}^2}{m_t^2}\right) + \frac{3m_t^4}{4\pi^2 v^2} \left(X_t^2 - \frac{1}{12}X_t^4\right) + \cdots$$

$$X_t = (A_t - \mu \cot \beta) / m_{\tilde{t}}$$

Higgs Mass @3-loop

Hahn, Heinemeyer, Hollik, Rzehak, Weiglein, 2014

 $m_A = M_2 = \mu = 1000 \,\text{GeV}, \, m_{\tilde{g}} = 1600 \,\text{GeV}$ and $\tan \beta = 1000 \,\text{GeV}$

Implications to SUSY Standard Model

To achieve the observed Higgs mass (125 GeV), we need either

1) Heavy stop (~7TeV) and/or large stop mixing

or

2) Addition of new source of Higgs mass at TeV scale

e.g. Vector-like Generation (T+Tbar) Additional Gauge Sym. (eg. U(1)_{B-L}sym.) Singlet Extension

Singlet Extensions

Jeong, Shoji & MY '11, '12, '14 Choi, Im, Jeong & MY '12

Superpotential

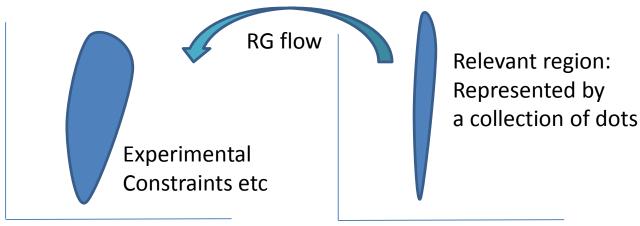
 $W = \lambda S H_u H_d + f(S) + (MSSM \text{ Yukawa terms})$

New Sources to increase Higgs Mass

1) tree-level coupling $\,\lambda$ (significant only for small tan β)

 $+ \, \lambda^2 \, \left| \, H_u H_d \, \right|^2$: new contribution to the Higgs potential

- 2) Higgs/Higgsino loop (>0, for heavy singlet boson) New coupling: Higgs-Higgsino-Singlino
- 1) Doublet-Singlet Mixing (>0, for light singlet boson) If singlet boson is light, mixing increases doublet Higgs mass.

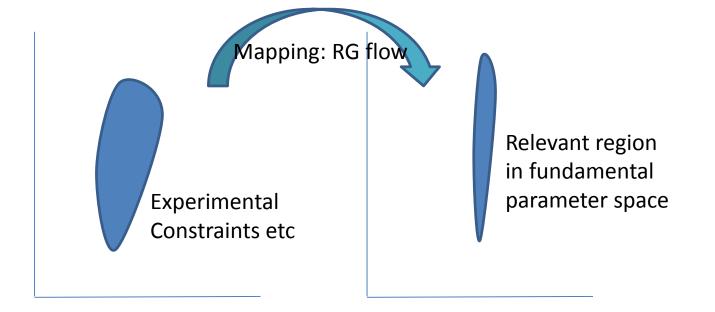

A Novel Approach to Fine-tuned SUSY

MY & Wen Yin (1606.04953)

- Within MSSM, sparticles seem to be heavy (e.g. stop mass around 7 TeV)
- Some fine-tuning is required to obtain EW scale.
- Don't give up SUSY
- Throw out the prejudices of the amount of fine tuning and the pattern of sparticle masses
- Nature may be described by fine-tuned SUSY.
- New complication to explore wider range of parameter space

How to analyze fine-tuned SUSY?

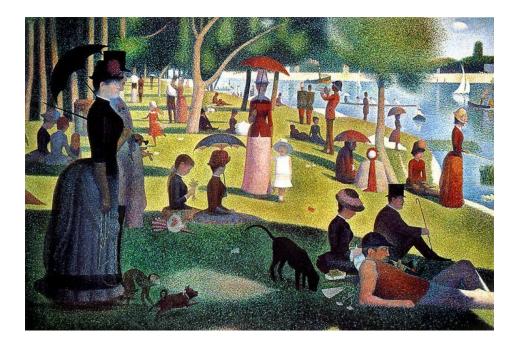
- Scatter plot method:
 - Represents a relevant region of the parameter space as a collection of dots
 - In fine-tuned SUSY, the relevant region might be too tiny to be explored in this way
 - Time consuming (by computer), inefficient and maybe misleading (wrong conclusion)



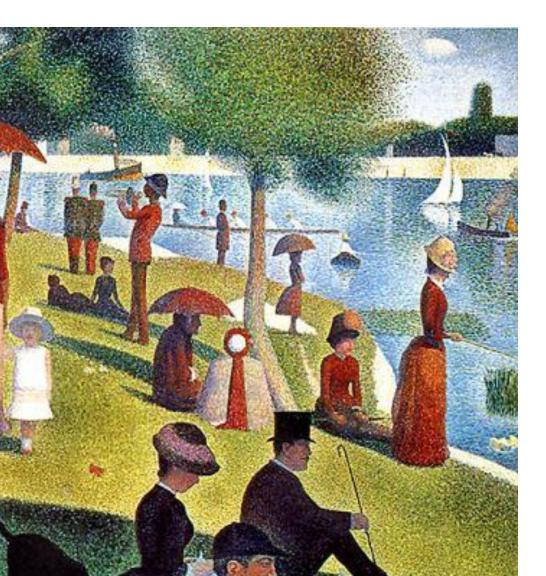
EW scale sparticle parameter space

Fundamental sparticle parameter space

• An alternative approach:


mapping into the fundamental parameter space

EW scale sparticle parameter space


Fundamental sparticle parameter space

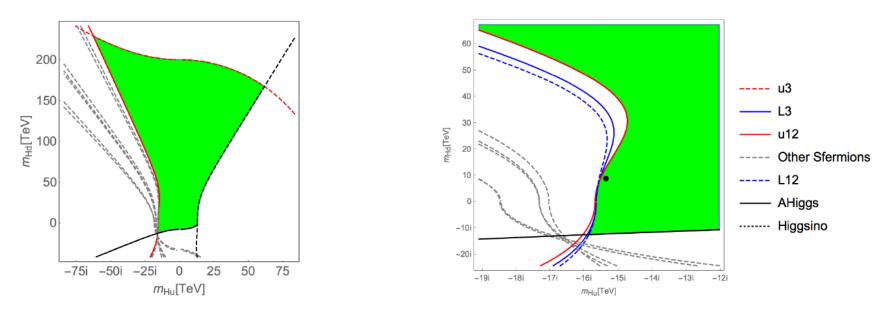

Pointillism vs Ukiyoe

Pointillism vs Ukiyoe

Illustration in Non-Universal Higgs Masses model

Set of the parameters: next simplest to CMSSM

$$\begin{split} \mathbf{m}_{\tilde{\mathbf{Q}}}^2 &= \mathbf{m}_{\tilde{\mathbf{u}}}^2 = \mathbf{m}_{\tilde{\mathbf{d}}}^2 = \mathbf{m}_{\tilde{\mathbf{L}}}^2 = \mathbf{m}_{\tilde{\mathbf{e}}}^2 = m_0^2 \mathbf{1} \\ M_1 &= M_2 = M_3 = M_0 \\ \mathbf{A}_u &= \mathbf{A}_d = \mathbf{A}_e = A_0 \mathbf{1} \\ m_{\mathrm{Hu}}^2 &= m_{\mathrm{Hu0}}^2, \ m_{\mathrm{Hd}}^2 = m_{\mathrm{Hd0}}^2 \\ B &= B_0, \mu = \mu_0. \end{split}$$


Two interesting cases found

Case 1) Inverted light squark

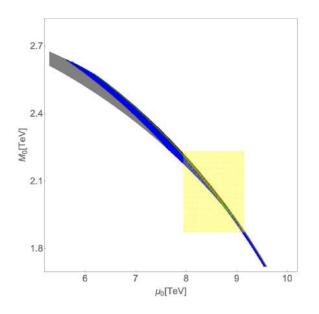
- Heavy 3rd generation squark \rightarrow Higgs mass
- − Light 1st & 2nd generation squarks → within reach of LHC
- Case 2) Region explaining the muon g-2 anomaly
 - Very very tiny region in the parameter space can explain the muon g-2 anomaly

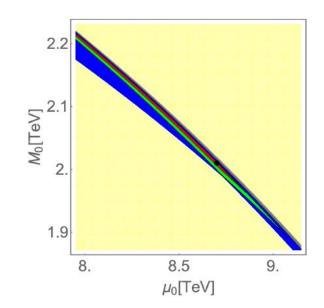
Case 1) Inverted light squark region

In the region close to the red line, the first two generation squarks are light (close to the experimental bound).

Sparticle masses in the sample point (represented by the black dot)

EW scale	$m_{\mathrm{H_u}}$	$m_{\rm H_d}$	$m_{ ilde{ extsf{Q}}3}$	$m_{ ilde{{f u}}3}$	$m_{ ilde{d}3}$	$m_{ ilde{ ext{L}}3}$	$m_{{ m \widetilde{e}3}}$	$m_{ ilde{\mathbf{Q}}12}$
TeV	-12.1i	8.3	6.6	7.5	4.3	1.3	5.1	4.1
$m_{ ilde{u}12}$	$m_{\tilde{d}12}$	$m_{ ilde{ ext{L}}12}$	$m_{\tilde{\mathbf{e}}12}$	M_1	M_2	M_3	μ	m_A
1.6	4.4	1.4	5.2	0.31	0.62	2.2	12.2	14.9


Mechanism for Inverted light squark


RGEs

$$\begin{split} &\frac{d}{dt}m_{\tilde{\mathbf{u}}\tilde{\mathbf{i}}}^2 \sim \frac{2}{16\pi^2} \bigg\{ 2y_{\mathbf{t}}^2 X_{\mathbf{t}} \delta_{i3} + Yg'^2 S - \frac{16}{3}g_3^2 M_3^2 - 4g'^2 Y^2 M_1^2 \bigg\}, \\ &S \equiv \bigg(m_{\mathrm{H}_{u}}^2 - m_{\mathrm{H}_{d}}^2 + \mathrm{Tr}[m_{\tilde{\mathbf{Q}}}^2 - m_{\tilde{\mathbf{L}}}^2 - 2m_{\tilde{\mathbf{u}}}^2 + m_{\tilde{\mathbf{d}}}^2 + m_{\tilde{\mathbf{e}}}^2] \bigg), \\ &X_{\mathbf{t}} \equiv m_{\mathrm{H}_{u}}^2 + m_{\tilde{\mathbf{Q}}_3}^2 + m_{\tilde{\mathbf{u}}_3}^2 + |A_{\mathbf{t}}|^2, \end{split}$$

Large and negative Xt makes the third generation squark heavier.

Case 2) Region explaining muon g-2

Sample point represented by black dot

EW scale	$m_{\rm H_u}$	$m_{\rm H_d}$	$m_{ ilde{\mathbf{Q}}3}$	$m_{ ilde{\mathrm{u}}3}$	$m_{ ilde{d}3}$	$m_{ ilde{ ext{L}}3}$	$m_{ ilde{ extbf{e}}3}$	$m_{ ilde{\mathbf{Q}}12}$
${\rm GeV}$	8044 <i>i</i>	7992i	5834	6161	5089	1637	2275	5168
$m_{\tilde{u}12}$	$m_{ m \tilde{d}12}$	$m_{\tilde{\mathrm{L}}12}$	$m_{\tilde{e}12}$	M_1	M_2	M_3	$A_{\mathrm{u}3}$	$A_{\rm d3}$
4920	4999	429	429	839	1659	5770	-4497	-6749
A _{e3}	A_{u12}	$A_{\rm d12}$	A_{e12}	μ	$m_{\rm A}$	FeynHiggs	$m_{\rm h}$ by FH	$\delta \alpha_{\mu}$ by FH
-1011	-7891	-7820	-1372	8043	907	(2.11.2) [4]	126(1.4)GeV	$2.5 imes 10^{-9}$

Conclusions

- Quest for new physics beyond Standard Model is underway.
- Hope to emerge a new concept of spacetime such as SUSY/Extra dimensions
- Should explore it from various directions (top-down/bottom-up/Cosmology connection)

Stay Tuned! Thank you very much