A deeper probe of the Higgs sector

B

Abdelhak DJOUADI (CNRS & Université Paris-Sud)

The Standard Model Higgs and beyond
 Tests of the Higgs properties
 Interludium: D_{γγ}
 Direct search for new states
 Conclusion

Tokyo 9/01/2017A deeper probe of the Higgs sector- A. Djouadi- p.1/31

The Standard Model Higgs and beyond

A very non-trivial check of the SM: test at the quantum/permille level: – constraints from data: $M_H = 92^{+34}_{-26}$ GeV ≤ 160 GeV at 95% CL – experimentaly found to be: $M_H = 125.1 \pm 0.24$ GeV (ie within 1σ ..) In addition, it looks as it has the properties of the SM Higgs state: The triumph of the SM model of particle physics; Standarissimo?! Tokyo 9/01/2017 A deeper probe of the Higgs sector – A. Djouadi – p.2/31

. The Standard Model Higgs and beyond

We have a theory for the strong electroweak forces, the SM, that is:

• a relativistic quantum field theory based on a gauge symmetry, • renormalisable as proved by 't Hooft and Veltman for SEWSB, • unitary as we have now a Higgs and its mass is rather small, • perturbative up to the Planck scale as again the Higgs is light, • leads to a (meta)stable electroweak vacuum up to high scales, • compatible with (almost) all precision data available to date... s the SM the "theory of everything" and should we be satisfied with it? **No! Low** energy manifestation of a fundamental theory that solves: • "Esthetical" problems with e.g. multiple and arbitrary parameters; **gauge c**oupling unification: $3 \neq g_i$ which do not meet a high scale. • "Experimental" problems as it does not explain all seen phenomena: ν masses/mixing, dark matter, baryon asymmetry in the universe (Note: SO(10) at intermediate $Q = 10^{11}$ GeV and axions cure these pbs) • "Theory" (or consistency) problem: the hierarchy/naturalness pbs. $\Delta M_{\rm H}^2 \propto \Lambda^2 \approx (10^{18} {\rm ~GeV})^2$: $M_{\rm H}$ not stable against high scales. All these indicate that there is beyond the Standard Model (?). **Tokyo 9/01/2017** A deeper probe of the Higgs sector – A. Djouadi – p.3/31

. The **S**tandard Model Higgs and beyond nain avenues for solving the hierarchy or naturalness problems

I. Compositeness/substructure: All particles are composite: Technicolor \Rightarrow **H** bound state of two fermions (no more spin-0 fundamental state). **II. Extra space–time dimensions** where at least s=2 gravitons propagate. \Rightarrow effective gravity scale $\Lambda \approx$. **EWSB** mechanism needed: H or not H! **III.** Supersymmetry: doubling the world. - links $s=\frac{1}{2}$ fermions to s=1 bosons, – links internal/space-time symmetries, - if made local, provides link to gravity, **– natu**ral $\mu^2 < 0$: radiative EWSB, \Rightarrow sparticle loops cancel Λ^2 behavior extend EWSB sector: at least 2 doublets. **Tokyo 9/0**1/2017 A deeper probe of the Higgs sector – A. Djouadi – p.4/31

. The Standard Model Higgs and beyond <u>The problem is that:</u>

ve observe a Higgs boson with a mass of 125 GeV and no other Higgs:

 $\sigma \times BR$ rates compatible with those expected in the SM Fit of all LHC Higgs data \Rightarrow agreement at 15–30% level Results from the LHC 7–8 TeV campaign already give us: $\mu_{tot}^{ATLAS} = 1.18 \pm 0.15$ $\mu_{tot}^{CMS} = 1.00 \pm 0.14$

we do not observe any new particle beyond those of SM with Higgs:
protund implications for most discussed BSM scenarios; they are in:
"Mortuary": Higgsless, 4th generation, fermio or gauge-phobic..
"Hospital": Technicolor, composite models (but see Christophe)
"Trouble" and strongly constrained: extra-dimensions, SUSY, ...
s an example, let us see what it implies for SUSY and the MSSM.
Tokyo 9/01/2017 A deeper probe of the Higgs sector – A. Djouadi – p.5/31

. The Standard Model Higgs and beyond In the MSSM we need two doublets of complex scalar fields H₁ and H₂ to generate up/down-type fermion masses and no chiral anomalies. after EWSB, three dof for W_{L}^{\pm} , $Z_{L} \Rightarrow 5$ physical states: h, H, A, H^{\pm} . Only two free parameters at tree-level to describe the system $an\beta, M_A$ $M_{h H}^{2} = \frac{1}{2} \left\{ M_{A}^{2} + M_{Z}^{2} \mp \left[(M_{A}^{2} + M_{Z}^{2})^{2} - 4M_{A}^{2}M_{Z}^{2}\cos^{2}2\beta \right]^{1/2} \right\}$ $\mathrm{M}^2_{\mathbf{H}^\pm} = \mathrm{M}^2_{\mathbf{A}} + \mathrm{M}^2_{\mathbf{W}}$ $\tan 2\alpha = \frac{-(\mathbf{M}_{\mathbf{A}}^2 + \mathbf{M}_{\mathbf{Z}}^2)\sin 2\beta}{(\mathbf{M}_{\mathbf{A}}^2 - \mathbf{M}_{\mathbf{A}}^2)\cos 2\beta} = \tan 2\beta \frac{\mathbf{M}_{\mathbf{A}}^2 + \mathbf{M}_{\mathbf{Z}}^2}{\mathbf{M}_{\mathbf{A}}^2 - \mathbf{M}_{\mathbf{Z}}^2} \ \left(-\frac{\pi}{2} \le \alpha \le \mathbf{0}\right)$ $M_h \lesssim M_Z |\cos 2\beta| + RC \lesssim 130 \text{ GeV}, M_H \approx M_A \approx M_{H^{\pm}} \lesssim M_{EWSB}.$ • Couplings of h, H to VV are suppressed; no AVV couplings (CP). • For $t an\beta \gg 1$: couplings to b (t) quarks enhanced (suppressed). $A \qquad 1/\tan\beta \qquad \tan\beta$ In decoupling limit: MSSM Higgs sector reduces to SM with a light h. Tokyo 9/01/2017 A deeper probe of the Higgs sector – A. Djouadi – p.6/31

Arbey, Battaglia, AD, Mahmoudi, Quevillon (2012) Arbey, Battaglia, AD, Mahmoudi, Quevillon (2012) A general MSSM and higher in constrained models. Tokyo 9/01/2017 A deeper probe of the Higgs sector – A. Djouadi – p.7/31

. The Standard Model Higgs and beyond

This is backed up by direct searches of SUSY particles at the LHC:

the SUSY scale $M_{SUSY} \gtrsim O(1 \text{ TeV})$ in most experimental searches..

	Model	e, μ, τ, γ	Jets	E ^{miss} _T	$\int \mathcal{L} dt [\mathbf{fb}]$	Mass limit	Reference
S	MSUGRA/CMSSM $\tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$ (compressed)	0 0 1 x	2-6 jets 2-6 jets 0-1 jet	Yes Yes	20.3 20.3 20.3	<i>q̃. ĝ</i> <i>q̃. ĝ</i> <i>q̃. ĝ</i> <i>q̃. ĝ</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i>	1405.7875 1405.7875 1411 1559
arche	$\widetilde{g}\widetilde{g}, \widetilde{g} \rightarrow q\widetilde{q}\widetilde{\chi}_{1}^{0}$ $\widetilde{g}\widetilde{g}, \widetilde{g} \rightarrow q\widetilde{q}\widetilde{\chi}_{1}^{0}$ $\widetilde{g}\widetilde{g}, \widetilde{g} \rightarrow qq\widetilde{\chi}_{1}^{\pm} \rightarrow qqW^{\pm}\widetilde{\chi}_{1}^{0}$	0 1 e,µ	2-6 jets 3-6 jets	Yes	20.3 20	k 1.33 TeV m(k [*]) ₁ = 0.6(x [*]) k 1.2 TeV m(k [*]) ₁ = 0.5(m(k [*]) ₁ +m(z))	1405.7875 1501.03555
ve Se	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq(\ell\ell/\ell\nu/\nu\nu)\tilde{\chi}_1^0$ GMSB ($\tilde{\ell}$ NLSP)	2 e,μ 1-2 τ + 0-1 ℓ	0-3 jets 0-2 jets	Yes	20 20.3	ĝ 1.32 TeV m(ξ ²)=0 GeV ĝ 1.6 TeV tanβ >20	1501.03555 1407.0603
Inclus	GGM (bino NLSP) GGM (wino NLSP) GGM (biggsing-bing NLSP)	2γ 1 $e, \mu + \gamma$	- - 1 h	Yes Yes Yes	20.3 4.8	<u>8 1.28 TeV</u> m(X [*])⊳50 GeV <u>8 619 GeV</u> m(X [*])⊳50 GeV <u>900 GeV</u> m(X [*])⊳20 GeV	ATLAS-CONF-2012-14- ATLAS-CONF-2012-14- 1211 1167
	GGM (higgsino NLSP) Gravitino LSP	2 e, μ (Z) 0	0-3 jets mono-jet	Yes Yes	5.8 20.3	% 690 GeV mk(1)=210 GeV % 690 GeV m(NLSP)=200 GeV F ^{1/2} scale 865 GeV m(G)>1.8 × 10 ⁻⁴ eV, m(g)=1.5 TeV	ATLAS-CONF-2012-152 1502.01518
3 rd gen. Ĩ med.	$\tilde{g} \rightarrow b \bar{b} \tilde{\chi}_{1}^{0}$ $\tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0}$	0	3 b 7-10 jets	Yes Yes	20.1 20.3	β 1.25 TeV m(k ² ₁)×400 GeV ĝ 1.1 TeV m(k ² ₁)<50 GeV	1407.0600 1308.1841
	$\tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0}$ $\tilde{g} \rightarrow b t \tilde{\chi}_{1}^{+}$	0-1 <i>e</i> ,μ 0-1 <i>e</i> ,μ	3 b 3 b	Yes Yes	20.1 20.1	ĝ 1.34 TeV m(ξ ⁰)<400 GeV ĝ 1.3 TeV m(ξ ⁰)<300 GeV	1407.0600 1407.0600
arks tion	$ \begin{array}{l} \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_1^0 \\ \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow t \tilde{\chi}_1^\pm \end{array} $	0 2 <i>e</i> , μ (SS)	2 b 0-3 b	Yes Yes	20.1 20.3	μ 100-620 GeV m(\tilde{k}_1^0)<90 GeV μ 275-440 GeV m(\tilde{k}_1^2)=2 m(\tilde{k}_1^0)	1308.2631 1404.2500
. squa	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b \tilde{\chi}_1^{\pm}$ $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow W b \tilde{\chi}_1^0 \text{ or } t \tilde{\chi}_1^0$	1-2 e,μ 2 e,μ	1-2 b 0-2 jets	Yes Yes	4.7 20.3	Ji 110-167 GeV 230-460 GeV m(k ² ₁) = 2m(k ⁰ ₁), m(k ² ₁) = 55 GeV i 90-191 GeV 215-530 GeV m(k ² ₁) = 16 eV i 90-191 GeV m(k ² ₁) = 16 eV i	1209.2102, 1407.0583 1403.4853, 1412.4742
rd gen irect p	$t_1 t_1, t_1 \rightarrow \mathcal{X}_1$ $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0$ $\tilde{t}_1 \tilde{t}_1 (natural GMSB)$	0 m 2 e, μ (Z)	ono-jet/c- 1 b	tag Yes Yes	20.3 20.3	r1 210-500 GeV m(x) = 166V <i>i</i> _1 90-240 GeV m(i) > 85 GeV <i>i</i> _1 150-580 GeV m(i) > 85 GeV	1407.0608 1403.5222
σ	$\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$ $\tilde{t}_2 = \tilde{t}_2 - \tilde{t}_2 \rightarrow \tilde{t}_1^0$	3 e, μ (Z)	1 <i>b</i>	Yes	20.3	Ž20-600 GeV m(ξ ⁰)/200 GeV 200-600 GeV m(ξ ⁰)/200 GeV	1403.5222
ot _	$\begin{split} &\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell}\nu(\ell\tilde{\nu}) \\ &\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell}\nu(\ell\tilde{\nu}) \\ &\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\tau}\nu(\tau\tilde{\nu}) \end{split}$	2 e,μ 2 τ	0	Yes	20.3 20.3	λ 140-465 GeV m(k1)=0 GeV, m(k, k)=0.5(m(k1)+m(k1)) k1 100-350 GeV m(k1)=0 GeV, m(k, k)=0.5(m(k1)+m(k1)) k1 100-350 GeV m(k1)=0 GeV, m(k, k)=0.5(m(k1)+m(k1))	1403.5294 1407.0350
E M dire	$\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{L} \nu \tilde{\ell}_{L} \ell(\tilde{\nu}\nu), \ell \tilde{\nu} \tilde{\ell}_{L} \ell(\tilde{\nu}\nu)$ $\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} Z \tilde{\chi}_{1}^{0}$ $\tilde{\chi}_{1}^{\pm} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} Z \tilde{\chi}_{1}^{0}$	3 e,μ 2-3 e,μ	0 0-2 jets	Yes Yes	20.3 20.3	ξ ² ₁ , k ² ₂ 700 GeV m(k ² ₁)=m(k ² ₂), m(k ² ₁)=0.5(m(k ² ₁)+m(k ² ₁)) ξ ² ₁ , k ² ₂ 420 GeV m(k ² ₁)=m(k ² ₁), m(k ² ₁)=0.5(m(k ² ₁)+m(k ² ₁)) ξ ² ₁ , k ² ₂ 420 GeV m(k ² ₁)=m(k ² ₁), m(k ² ₁)=0.5(m(k ² ₁)+m(k ² ₁))	1402.7029 1403.5294, 1402.7029
_	$\begin{array}{c} \chi_1 \chi_2 \rightarrow W \chi_1 h \chi_1, h \rightarrow b b / W W / \tau \tau / \\ \tilde{\chi}_2^0 \tilde{\chi}_3^0, \tilde{\chi}_{2,3}^0 \rightarrow \tilde{\ell}_{\mathrm{R}} \ell \end{array}$	γγ <i>e</i> ,μ,γ 4 <i>e</i> ,μ	0-2 0	Yes	20.3	At μX z 250 GeV m(X) = m(X2), m(X) = 0, sleptons decoupled K ¹ ₂ z 620 GeV m(K ² ₂)=m(K ² ₃), m(K ² ₁)=0, sleptons decoupled	1501.07110 1405.5086
ong-lived	Direct $\chi_1^+ \chi_1^-$ prod., long-lived χ_1^+ Stable, stopped \tilde{g} R-hadron Stable \tilde{g} R-hadron	Disapp. trk 0 trk	1 jet 1-5 jets	Yes	20.3 27.9	χ₁ 270 GeV m(ξ1)/m(ζ1)/=160 MeV, τ(ζ1)/=0.2 ns χ̄ 832 GeV m(ζ1)/=100 GeV, 10 μs <r(ζ)< th=""> m(ζ1)/=100 GeV, 10 μs<r(ζ)< th=""> φ 1 27 TaV 1 100 GeV, 10 μs<r(ζ)< th=""> 100 GeV, 10 μs<r(ζ)< th=""> 100 GeV, 10 μs 100 GeV, 10 μs</r(ζ)<></r(ζ)<></r(ζ)<></r(ζ)<>	1310.3675 1310.6584 1411.6795
	GMSB, stable $\tilde{\tau}, \tilde{\chi}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(e, \tilde$,μ) 1-2 μ 2 γ	-	- Yes	19.1 20.3	δ 537 GeV 10 <tar th="" β<50<=""> k_{μ}^{μ} 435 GeV 2<rt <math="">k_{\mu}^{\mu}) 3 ns, SPS8 model</rt></tar>	1411.6795 1409.5542
_	$\tilde{q}\tilde{q}, \tilde{\chi}_{1}^{0} \rightarrow qq\mu \text{ (RPV)}$ LFV $pp \rightarrow \tilde{\gamma}_{\tau} + X, \tilde{\gamma}_{\tau} \rightarrow e + \mu$	1 μ, displ. vtx	-	-	20.3	ĝ 1.0 TeV 1.5 <cr<156 br(μ)="1," m(ξ<sup="" mm,="">0)=108 GeV p. 1.61 TeV λ',, =0.10, λ₁, =0.05</cr<156>	ATLAS-CONF-2013-09
>	LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e(\mu) + \tau$ Bilinear RPV CMSSM	1 e, μ + τ 2 e, μ (SS)	- 0-3 b	- Yes	4.6 20.3	γ. 1.1 TeV λ ₁₁ 0.10. λ _{1(D)10} =0.05 φ. φ 1.35 TeV M(g)=m(g), cT_SP<1 mm	1212.1272 1404.2500
RP	$ \begin{split} \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow e e \tilde{\nu}_{\mu}, e \mu \tilde{\nu}_{e} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow \tau \tau \tilde{\nu}_{e}, e \tau \tilde{\nu}_{\tau} \end{split} $	4 e,μ 3 e,μ + τ	-	Yes Yes	20.3 20.3	k ¹ 750 GeV m(k ²)>0.2×m(k ²),λ ₁₂₁ ≠0 k ² 450 GeV m(k ²)>0.2×m(k ²),λ ₁₂₁ ≠0 m(k ²)>0.2×m(k ²),λ ₁₂₁ ≠0	1405.5086 1405.5086
	$g \rightarrow qqq$ $\tilde{g} \rightarrow \tilde{t}_1 t, \tilde{t}_1 \rightarrow bs$	0 2 <i>e</i> , μ (SS)	6-7 jets 0-3 b	Yes	20.3 20.3	g 916 GeV BH(p)=BR(c)=0% ž 850 GeV	AILAS-CONF-2013-09 1404.250
Othor	Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_{1}^{0}$	0	2 c	Yes	20.3		1501.01325

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty.

⇒ ATLAS/CMS depressing tables (update: B. Petersen).... Tokyo 9/01/2017 A deeper probe of the Higgs sector – A. Djouadi – p.8/31

The Standard Model Higgs and beyond Also backed up indirectly by the measurement of the Higgs properties: fits of the h couplings \Rightarrow constraints on the MSSM $[M_A, \tan\beta]$ plane.

with dominant RC only (see e.g. above for M_h) the h couplings read: $\mathbf{g_{h\bar{t}t}} = \cos \alpha / \sin \beta$ $\mathbf{g}_{\mathbf{h}\bar{\mathbf{b}}\mathbf{b}} = \cos\alpha / \sin\beta$ $\mathbf{g}_{\mathbf{h}\mathbf{V}\mathbf{V}} = \sin(\beta - \alpha)$ $\alpha \approx \mathbf{f}(\tan\beta, \mathbf{M}_{\mathbf{A}}, \mathbf{M}_{\mathbf{h}})$ like M_H and M_H^{\pm} as in so-called hMSSM **AD**, Quevillon, Maiani ... (2013) – A. Djouadi – p.9/31

he next question is then. "is Particle Physics closed"? Answer is not) Need to check that H is indeed responsible of EWSB (and SM-like?) — measure its fundamental properties in the most precise way: • its mass and total decay width (invisible width due to dark matter?), • its spin-parity quantum numbers (CP violation for baryogenesis?), • its couplings to fermions and gauge bosons and check if they are only proportional to particle masses (no new physics contributions?), • its self-couplings to reconstruct the potential V_S that makes EWSB. Possible for $M_H \approx 125$ GeV as all production/decay channels useful.

- A. Djouadi - p.10/31

. Tests of the Higgs properties A check of spin parity quantum numbers

Spin: clear situation (no suspense) as the new state decays into $\gamma\gamma \Rightarrow$ not s=1 from Landau–Yang and s=2 (KK graviton?) unlikely..

Prombers: CP-even, CP-odd, or mixture? more important issue: CPV in Higgs sector.) ATLAS and CMS MELA analyses for pure CP → pure CP-even favored at ≈ 3*σ* level. **But problems with this (too simple) picture: pure CP-odd does not couple to VV@tree-level.**

Indirect probe: through $\hat{\mu}_{ZZ} = 1.1 \pm 0.4$ $g_{HVV} = c_V g_{\mu\nu}$ gives upper bound on CP $\eta_{CP} \equiv 1 - c_V^2 \gtrsim 0.5@68\% CL$ Direct probe: g_{Hff} more democratic.

 $\begin{array}{ll} \mbox{spin-correlations in $q\bar{q} \rightarrow HZ \rightarrow b\bar{b}ll$\\ \mbox{or later in $q\bar{q}/gg \rightarrow Ht\bar{t} \rightarrow b\bar{b}t\bar{t}.$\\ \hline \mbox{Lxtremely challenging even at $HL-LHC...$\\ \hline \mbox{Fokyo $9/01/2017} & A deeper probe of the Higgs sector } \end{array}$

• A much more precise measurement of the **n various H production+decay channels But rather large errors mainly due to:** - experimental: stats, system., lumi... - theory: PDFs, HO/scale, jetology... total error about 15–20% in $\mathrm{gg}
ightarrow \mathrm{H}$ Hjj contaminates VBF (now 30%).. \Rightarrow ratios of σ xBR: many errors out! Deal with width ratios $\Gamma_{\mathbf{X}}/\Gamma_{\mathbf{Y}}$ - **TH** on σ and some EX errors - parametric errors in BRs - TH ambiguities from $\Gamma_{\rm H}^{\rm tot}$ c_f • Achievable accuracy: -0.3- now: 20–30% on some ratios -1.0

- future: few % at HL–LHC?

But will this be sufficient to probe BSM physics (at.high scales..)? Fokyo 9/01/2017 A deeper probe of the Higgs sector – A. Djouadi – p.12/31

- Total width: $\Gamma_{\rm H} = 4$ MeV, too small to be resolved experimentally.
- **very l**oose bound from interference $gg \rightarrow ZZ$ (a factor 2–5 at most).
- **no way to access it indirectly (via production rates) in a precise way.**
- Invisible decay width: more easily accessible at the LHC

Direct measurement:

 $q\bar{q} \rightarrow HZ$ and $qq \rightarrow Hqq$; $H \rightarrow inv$ Combined HZ+VBF search from CMS $BR_{inv} \lesssim 50\% @95\%$ CL for SM Higgs Also promising in the future: monojets

$\mathbf{gg} \rightarrow \mathbf{H} + \mathbf{j} \rightarrow \mathbf{j} + \mathbf{E}_{\mathbf{T}}$

Indirect measurement:

again assume SM-like Higgs couplings constrain width from signal strengths $BR_{inv} \lesssim 50\%@95\%CL$ for $c_f = c_V = 1$ Improvement in future: 10%@HL-LHC?

Fokyo 9/01/2017A deeper probe of the Higgs sector

⇒ difficult to be beaten by anything else for ≈ 125 GeV Higgs ⇒ welcome to the e⁺e⁻ precision machine! But let's get back to the near future: what can we do at HL-LHC? Tokyo 9/01/2017 A deeper probe of the Higgs sector – A. Djouadi – p.15/31

. Interludium: $D_{\gamma\gamma}$

• Precise measurement of Higgs couplings in various H channels:

example of the cleanest detection channels: $\mathbf{H} \to \overline{\gamma\gamma}, \ \mathbf{H} \to \mathbf{ZZ}^* \to 4\ell^{\pm}$

chan nel	atlas	cms
$\mu_{\gamma\gamma}$	$1.17 \ {}^{+0.23}_{-0.23} \ {}^{+0.16}_{-0.11} \ \ ({}^{+0.12}_{-0.08})$	$1.14 egin{array}{cccc} +0.21 & +0.16 & (+0.09) \ -0.21 & -0.10 & (-0.05) \end{array}$
$\mu_{\mathbf{Z}\mathbf{Z}}$	$1.46 \ {}^{+0.35}_{-0.31} \ {}^{+0.19}_{-0.13} \ ({}^{+0.18}_{-0.11})$	$0.93 \ {}^{+0.26}_{-0.23} \ {}^{+0.13}_{-0.09}$

Is this enough to probe effects of new physics or BSM? ot in the case of weakly interacting theories like 2HDM, SUSY, etc... expect effects at $\approx \frac{C_{new} \alpha_W}{\pi} \approx \frac{M_h^2}{M^2} \approx 1\%$; ATLAS Simulation $\sqrt{s} = 14 \text{ TeV}: \left[\text{Ldt} = 300 \text{ fb}^{-1}; \right] \text{Ldt} = 3000 \text{ fb}^{-1}$ is 1% accuracy achievable at HL-LHC (3ab⁻¹)? fb⁻¹ extrapolated from 7+8 TeV H→µµ • Statistical error: $20\%/\sqrt{3 \times 100} \lesssim 1-2\%$ ttH,H→μμ VBF.H→ττ (projection OK with ATLAS+CMS combo) $H \rightarrow ZZ$ • Systematical error: can be made $\leq 1\%$? VBF,H→ WW $H \rightarrow WW$ some errors are common (luminosity, etc....). $VH, H \rightarrow \gamma \gamma$ ttH,H→γγ • Theoretical uncertainty (if it is $\gg 1\%$): $VBF,H\rightarrow\gamma\gamma$ will be then by far the crucial/limiting issue! Н→үү (+j) Η→γγ How big is it? Can it be reduced? Removed? 0.2 0.4 0.6 0.8 0 A deeper probe of the Higgs sector – A. Djouadi – p.16/31 **Fokyo 9/01/2017**

. Interludium: $D_{\gamma\gamma}$

LO^{*a*}: already at one loop CD: exact NLO^{*b*}: K \approx 1.7 EFT NLO^{*c*}: good approx. EFT NNLO^{*d*}: K \approx 2 EFT NNLL^{*e*}: \approx + (5%) EFT N3LO^{*f*}: \approx 3%. W: EFT NLO: ^{*g*}: \approx ± very small exact NLO^{*h*}: \approx ± a few % QCD+EW^{*i*}: a few % istributions: a few programs^{*j*}

^aGeorgi+Glashow+Machacek+Nanopoulos ^bSpira+Graudenz+Zerwas+AD (exact)₂ ^cSpira+Zerwas+AD; Dawson (EFT) ^dHarlander+Kilgore, Anastasiou+Melnik ^cCatani+de Florian+Grazzini+Nason ^fAnustasiou et al. (2015)! ^gGantoino+AD; Degrassi et al. ^hActis+Passarino+Sturm+Uccirati ⁱAnustasiou et al.; Grazzini, Nason... **Fokyo 9/01/2017** A deeper probe of the Higgs sector

Interludium: $D_{\gamma\gamma}$ **Despite of that.** the gg \rightarrow H cross section still affected by uncertainties

Higher-order or scale uncertainties:
 K-factors large ⇒ HO could be important
 HO estimated by varying scales of process

 $\mu_0/\kappa \leq \mu_{\mathbf{R}}, \mu_{\mathbf{F}} \leq \kappa \mu_0$ at IHC: $\mu_0 = \frac{1}{2}M_H, \kappa = 2 \Rightarrow \Delta_{\text{scale}}^{\text{NNLO}} \approx 10\%$ • gluon PDF+associated α_s uncertainties: **PDF(g)** at high-x less constrained by data α_s uncertainty (WA, DIS?) affects $\sigma \propto \alpha_s^2$ \Rightarrow still discrepancies between NNLO PDFs **PDF4LHC recommend:** $\Delta_{pdf} \approx 10\%$ @lHC Uncertainty from EFT approach at NNLO $m_{loop} \gg M_H$ good for top if $M_H \lesssim 2m_t$ but not for b ($\approx 10\%$) and W/Z loops **Estimate from (exact) NLO:** $\Delta_{\rm EFT} \approx 5\%$ total $\Delta \sigma^{
m NNLO}_{
m gg
ightarrow
m H
ightarrow
m X} \approx 10-20\%$ @lHC **LHC-HxsWG: Baglio+AD** \Rightarrow A deeper probe of the Higgs sector <mark>Fokyo 9/0</mark>1/2017

Interludium: $D_{\gamma\gamma}$ **Production cross sections**

Fokyo 9/01/2017

 $gg \rightarrow H$ by far dominant process $(\approx 85\%$ of the events before cuts) 100 $\Rightarrow O(10\%)$ total TH uncertainty 10 **followed by cleaner VBF+VH modes:** only $\leq 15\%$ of rate before cuts... smaller TH error only for inclusive...^{0.1} $\Rightarrow O(10\%)$ for total uncertainty? **LHCXSWG** (2011), Baglio et al (2015) **Decay** branching ratios **Dominant decay** $H \rightarrow b\bar{b} \approx 60\%$ **Affected by QCD+parametric errors:** from m_b and α_s only, a few $\% \Rightarrow$ migrate to O(5%) error in other modes such as $\mathbf{H} \to \gamma \gamma, \mathbf{ZZ}, \mathbf{WW}, \tau \tau$ (partial widths very precise $\leq 1\%$). **too** large theory uncertainties (even if reduced by a factor of 2)...

A deeper probe of the Higgs sector – A.

- A. Djouadi - p.19/31

. Interludium: $\mathbf{D}_{\gamma\gamma}$

Best way to eliminate theory uncertainty: use ratios of signal rates.

 $\begin{array}{l} \mathbf{H} \rightarrow \mathbf{VV} \text{ with } \mathbf{V} \rightarrow \ell \text{ as reference and } \mathbf{H} \rightarrow \mathbf{XX} \text{ with } \mathbf{H} \text{ produced in p:} \\ \mathbf{D}_{\mathbf{XX}} = \sigma^{\mathbf{p}}(\mathbf{pp} \rightarrow \mathbf{H} \rightarrow \mathbf{XX}) / \sigma^{\mathbf{p}}(\mathbf{pp} \rightarrow \mathbf{H} \rightarrow \mathbf{VV}) \end{array}$

 $= \sigma^{\mathbf{p}}(\mathbf{p}\mathbf{p} \rightarrow \mathbf{H}) \times \mathbf{B}\mathbf{R}(\mathbf{H} \rightarrow \mathbf{X}\mathbf{X}) / \sigma^{\mathbf{p}}(\mathbf{p}\mathbf{p} \rightarrow \mathbf{H}) \times \mathbf{B}\mathbf{R}(\mathbf{H} \rightarrow \mathbf{V}\mathbf{V})$

 $= \mathbf{BR}(\mathbf{H} \rightarrow \mathbf{XX}) / \mathbf{BR}(\mathbf{H} \rightarrow \mathbf{VV}) = \Gamma(\mathbf{H} \rightarrow \mathbf{XX}) / \Gamma(\mathbf{H} \rightarrow \mathbf{VV})$

To first approximation: $D_{\mathbf{X}\mathbf{X}} = c_{\mathbf{X}}^2/c_{\mathbf{V}}^2$

Works only if one selects exactly same kinematical configuration
(i.e. same "fiducial cross sections") for the two channels X and V!
the theoretical uncertainties from the cross sections drop out;
the parametric uncertainties from the branching ratios drop out;
the theoretical ambiguities in the Higgs total width also drop out;

⇒ D_{XX} measures only the ratio of partial decay widths. • Extremely clean theoretically, although some information will be lost • And maybe it has also some advantages from the experimental side? Hest probe by far is D_{γγ} which measures deviations of the γγ loop $D_{\gamma\gamma} = \frac{\sigma(pp \rightarrow H \rightarrow \gamma\gamma)}{\sigma(pp \rightarrow H \rightarrow VV)} = \frac{\Gamma(H \rightarrow \gamma\gamma)}{\Gamma(H \rightarrow VV)} = \frac{d_{\gamma\gamma}c_{\gamma}^2/c_{V}^2}{AD(2012)}$ Fokyo 9/01/2017 A deeper probe of the Higgs sector - A. Djouadi - p.20/31

Interludium: $D_{\gamma\gamma}$ $\sum_{\gamma} \frac{G_{\mu} \alpha^2 M_{H}^3}{128 \sqrt{2} \pi^3} \left| \sum_{f} N_{c} e_{f}^2 A_{\frac{1}{2}}^H(\tau_{f}) + A_{1}^H(\tau_{W}) \right|^2$ $\begin{array}{ll} \gamma(Z) & \mathbf{A_{1/2}^{H}}(\tau) = \mathbf{2}[\tau + (\tau - \mathbf{1})\mathbf{f}(\tau)] \, \tau^{-2} \\ \mathbf{\mathcal{M}} & \mathbf{A_{1}^{H}}(\tau) = -[\mathbf{2}\tau^{2} + \mathbf{3}\tau + \mathbf{3}(\mathbf{2}\tau - \mathbf{1})\mathbf{f}(\tau)] \, \tau^{-2} \end{array}$ Loop decay. In SM: only W- and top-loops are relevant (others small) • For $m_i \to \infty \Rightarrow A_{1/2} = \frac{4}{3}$ and $A_1 = -7$: W loop dominating! (approximation $\tau_W \to 0$ valid only for $M_H \lesssim 2M_W$: relevant here). yy width counts the number of charged particles coupling to Higgs! **Contribution** A_s^p of particle p of spin s with Higgs coupling g_{Hpp} : $A_0^p = -rac{1}{3}g_{Hpp}^2/m_P^2, A_{1/2}^p = +rac{4}{3}g_{Hpp}^2/m_P^2, A_1^p = -7g_{Hpp}^2/m_P^2,$ If $g_{Hpp} \propto m_p \Rightarrow A_0^p \rightarrow +rac{1}{3}, A_{1/2}^p \rightarrow -rac{4}{3}, A_1^p \rightarrow +7.$ **Small/c**alculated QCD and EW corrections: only of order of percent. +Spira+Zerwas, Vicini et al., Passarino et al., AD+Gambino, Denner et al.,.. In SM with W,t loops: ${f c}_{\gamma}pprox {f 1.26 imes} |{f c}_{f W}-{f 0.21\, c}_{f t}|$ Assuming custodial symmetry $g_{HZZ} = g_{HWW} = c_V, D_{\gamma\gamma} = c_{\gamma}^2/c_V^2$ is $\mathrm{c}^2_{_{\gamma}}/\mathrm{c}^2_{_{\mathbf{V}}}pprox 6.5 imes |1-rac{1}{5}\mathrm{c_t}/\mathrm{c_V}|^2$ with $c_V = c_t = 1$ in SM. Any new physics effects will alter this value.

 Formula Comparison of the Higgs sector
 A deeper probe of the Higgs sector
 A. Djouadi
 P.21/31

Interludium: $\mathbf{D}_{\gamma\gamma}$

Vill D₁ be the g-2 of the LHC?

Examples of BSM searches with the observable if measured at 1% level AD, J. Quevillon and R. Vega-Morales, arXiv:1509.03913 Model independent search through an effective Lagrangian approach.

$$\mathcal{L} = \frac{\mathbf{H}}{\mathbf{v}} \Big(\mathbf{c}_{\mathbf{V}} (\mathbf{2} \mathbf{M}_{\mathbf{W}}^{2} \mathbf{W}_{\mu}^{+} \mathbf{W}^{-\mu} + \mathbf{M}_{\mathbf{Z}}^{2} \mathbf{Z}_{\mu} \mathbf{Z}^{\mu}) - \mathbf{m}_{\mathbf{t}} \mathbf{\overline{t}} (\mathbf{c}_{\mathbf{t}} + \mathbf{i} \mathbf{\widetilde{c}}_{\mathbf{t}} \gamma^{\mathbf{5}}) \mathbf{t} \Big)$$

$$+rac{\mathbf{c}_{\gamma\gamma}}{4}\mathbf{F}^{\mu
u}\mathbf{F}_{\mu
u}+rac{\mathbf{ ilde{c}}_{\gamma\gamma}}{4}\mathbf{ ilde{F}}^{\mu
u}\mathbf{F}_{\mu
u}\Big)$$

Fokyo 9/01/2017A deeper probe of the Higgs sector– A. Djouadi– p.23/31

. Interludium: $D_{\gamma\gamma}$ $\propto rac{4}{3} imes {f g}_{{f h}\chi_{f i}^+\chi_{f i}^-}/m_{\chi_{f i}^\pm} \propto 1/m_{\chi_{f i}^\pm}^2$ $1 \propto rac{1}{3} imes {f g_{f h ilde au_{f i} ilde au_{f i}}}/m_{ ilde au_{f i}}^2 \!\propto\! m_ au {f X_ au}/m_{ ilde au_{f i}}^2$ $\Delta D_{\gamma\gamma}$ $\Delta D_{\gamma\gamma}$ 20 0.02 0.05 0.01 0.500 1000-0.300 15 0.005 0.100 800 $m_{\tilde{t}_2}$ [TeV] 0.050 tan*β*=60 600 0.040 10 *X*_τ<0 0.030 400 0.020 5 0.010 200 $\tan\beta = 1$ -0.05 -0.01 0.005 200 400 600 800 1000 $m_{\chi_1^{\pm}} \, \, [\text{GeV}]$ 60 120 140 160 80 100 180 200 $m_{\tilde{\tau}_1}$ [GeV]

o limit on charginos and stau's from LHC direct searches in some cases. Fokyo 9/01/2017 A deeper probe of the Higgs sector – A. Djouadi – p.24/31

. Interludium: $\mathbf{D}_{\gamma\gamma}$

Direct search for new states w that the Higgs boson is found, is Particle Physics "closed"? Not 2) Fully probe the TeV scale that is relevant for the hierarchy problem **cont**inue to search for heavier H bosons and new (super)particles. or instance in the MSSM: search for the heavier Higgs bosons: Fig. **Improve** "standard" searches for the heavier MSSM Higgs bosons: • Searches for the $pp \rightarrow A/H/(h) \rightarrow \tau \tau$ resonant process: \Rightarrow constrains high tan β for low M_A values. • Searches for charged Higgs in $t \rightarrow bH^+ \rightarrow b\tau\nu$ decays: • Search for the heavier Higgsses in H \rightarrow ZZ,WW (and $\gamma\gamma$!) modes:

Direct search for new states

• More Higgs particles: $\Phi = h, H, A, H^{\pm}$:

licated in the MSSM

- some couple almost like the SM Higgs,
- but some are more weakly coupled.
- In general same production as in SM but also new/more complicated processes (rates can be smaller or larger than in SM).
- Possibly many different decay modes, (and clean decays eg into $\gamma\gamma$ suppressed).
- Impact of light SUSY particles?

⇒ very complicated situation in general.
But simpler in the decoupling regime:

– h as in SM with $\mathbf{M_{h}}\!=\!\mathbf{115}\!-\!\mathbf{130}~GeV$

- dominant mode: $gg, b\bar{b} \rightarrow H/A \rightarrow \tau\tau$.

It is even more tricky in beyond MSSM, and also in many non-SUSY extensions...

<mark>Fokyo 9/0</mark>1/2017

A deeper probe of the Higgs sector – A. Djouadi – p.27/31

Direct search for new states

Now that the Higgs boson is found, is Particle Physics "closed"? No! 2) Fully probe the TeV scale that is relevant for the hierarchy problem ⇒ continue to search for heavier H bosons and new (super)particles. r instance in gtghe MSSM: search for the heavier Higgs bosons: Fig.

B) Look at other channels for H/A not present in the SM case:
Searches for the interesting channels A → hZ and H → hh for low tanβ and not too heavy A,H states (below tt threshold)
Searches for heavy H/A → tt resonances (beware of interference) for low tanβ and heavy A,H states (far above the tt threshold)

Direct search for new states

The "money Higgs plot" at the end of the LHC could look like:

. Direct search for new states

Search for supersymmetric particles not only strong but also electroweak): - squarks and gluinos up to a few TeV, - chargino/neutralino/sleptons to 1 TeV, - LSP/DM neutralino up to few 100 GeV, including in non minimal scenarios). See David Shih; example of CMS for $\tilde{t}/\chi_1^0 \Rightarrow$

• Search for any new heavy particle (predicted in all BSM extensions...):

<mark>- new m</mark>ulti–TeV Z′ bosons

- Kaluza–Klein excitations
- Techni-fermions and bosons
- top (composite) partners
- unexpected ones (LQ, new f, ..)

See Brian; ex: ATLAS for $\mathbf{Z}' \rightarrow \ell \ell \Rightarrow$

t-t production LSP mass [GeV] CMS Preliminary 450 √s = 8 TeV SUSY 2013 Expected 400 SUS-13-004 0-lep+1-lep (Razor) 19.3 fb⁻¹ ($\tilde{t} \rightarrow t \tilde{\chi}^0$) 350 SUS-13-011 1-lep (leptonic stop)19.5 fb⁻¹ ($\widetilde{t} \rightarrow t \, \widetilde{\chi}_{-}^{0}$) S-13-011 1-lep (leptonic stop)19.5 fb⁻¹ ($\tilde{t} \rightarrow b \ \tilde{\chi}_{*}^{*}$, x=0.25) 300 250 200 150 100 50 200 300 400 500 600 700 100 800 σ B [pb] ATLAS --- Expected limit √s = 8 TeV Expected ± 1σ 10 $Z' \rightarrow H$ Expected $\pm 2\sigma$ Observed limit 10^{-2} ____Ζ'_Ψ 10⁻³ 10 $L dt = 20.3 \text{ fb}^{-1}$ dt = 20.5 fb 2.5 3.5 M₇ [TeV]

Fokyo 9/01/2017A deeper probe of the Higgs sector

- A. Djouadi - p.30/31

Conclusion

Hence, we need to continue search for New Physics and falsify the SM:

indirectly via high precision Higgs measurements (HL-LHC, ILC, ...),
directly via heavy particle searches at high-energy (HE-LHC, CLIC),
and we should plan/prepare/construct the new facilities already now.

So let's move forward: it is still action time! (or as the experimentalists usually say: stay tuned...) Fokyo 9/01/2017 A deeper probe of the Higgs sector – A. Djouadi – p.31/31