BSM landscape

after the Higgs discovery

"Physics in the $\angle H C$ and the Early Universe" Tokyo, January 10, 2017

DESY (Hamburg) Humboldt University (Berlin) (christophe.grojean@desy.de)

The SM and... the LHC data so far rules the world!

[and we, HEP practitioners, are all entitled for some royalties!]

$10-$
the same set of eqs. describe phenomena over 15 orders of magnitude

All results at: htip:llcem.ch/go/pN7
Th seg nexp so

The SM and... the rest of the Universe

[and we all have to return our royalties!]

Christophe Grojean

BSM landscape

Tokyo, Jan. 10, 2017

What is physics beyond the Standard Model?

I don't know. Nobody knows [If it were known, it would be part of the SM!] Plenty of evidences that BSM exist We just don't know what it is
We have plenty of good ideas. There are rich opportunities
But no guarantee we are on the right track
We should stay open-minded and also learn from our failures
"Looking and not finding is different than not looking"

Sailing to the West with the right tool...

Once upon a time...
Columbus had a great proposal: "reaching India by sailing from the West"

- He had a theoretical model
the Earth is round,
- Eratosthenes of Cyrene first estimated its circumference to be 250'000 stadia -other measurements later found smaller values Toscanelli's map \rightarrow lost in unit-conversion or misled by post-truth statements, Columbus thought it was only 70 '000 stadia, so he believed he could reach India in 4 weeks
[He had the right technology
-Caravels were the only ships at that time to sail against the wind, necessary tool to fight the prevailing winds, aka Alizée.

Sailing to the West with the right tool...

Once upon a time...
Columbus had a great proposal: "reaching India by sailing from the West"

- He had a theoretical model
the Earth is round,
- Eratosthenes of Cyrene first estimated its circumference to be 250'000 stadia -other measurements later found smaller values Toscanelli's map - lost in unit-conversion or misled by post-truth statements, Columbus thought it was only 70 '000 stadia, so he believed he could reach India in 4 weeks
- He had the right technology
-Caravels were the only ships at that time to sail against the wind, necessary tool to fight the prevailing winds, aka Alizée.
His proposal was scientifically rejected twice (by Portuguese's \& Salamanca U.) by the decision was overruled by Isabel ... and America became great (already)

Moral(s)

* "if your proposal is rejected, submit it again" ${ }_{\text {J. Mnich }}$
*"you need the right technology to beat your competitors"
J. Fuster
"theorists don't need to be right! But progress needs theoretical models to motivate exploration"
* "precise data without the big picture might be misleading"

HEP with a Higgs boson

"With great power comes great responsibility"
Voltaire \&e Spider-Man
which, in physics, really means
"With great discoveries come great measurements"
HEP physicist desperately looking for anomalies and writing a grant proposal
(true credit: F. Maltoni)

> I will take the Higgs boson as an example but similar story might be made for neutrinos, gravitational waves...

HEP with a Higgs boson

The successes have been breathtaking
in 4 years, the Higgs mass has been measured to 0.2% (vs 0.5% for the 20-year old top) some of its couplings, e.g. κ_{γ}, have been measured with 1-loop sensitivity (as EW physics at LEP)

The meaning of the Higgs

Particle physics is not so much about particles but more about fundamental principles

- About 10^{-10} s after the Big Bang, the Universe filled with the Higgs substance because it saved energy by doing so:
"the vacuum is not empty"

$$
\text { (even when } \hbar \rightarrow 0 \text {, not a Casimir effect) }
$$

- The masses are emergent quantities due to a non-trivial vacuum structure - There are only a finite number of particles (the SM ones) that acquire their mass via the Higgs vev
- There exists a new type (non-gauged) of fundamental forces: matterdependent forces ($e \neq \mu$), e.g. familon, relaxion, Higgs portals...

HEP with a Higgs boson

The successes have been breathtaking

in 4 years, the Higgs mass has been measured to 0.2% (vs 0.5% for the 20-year old top) some of its couplings, e.g. κ_{γ}, have been measured with 1-loop sensitivity (as EW physics at LEP)

Higgs agenda for the LHC-II, HL-LHC, ILC/CLIC, FCC, CepC, SppC, SHiP
multiple independent, synergetic and complementary approaches to achieve precision (couplings), sensitivity (rare and forbidden decays) and perspective (role of Higgs dynamics in broad issues like EWSB and vacuum stability, baryogenesis, inflation, naturalness, etc)

* rare Higgs decays: $h \rightarrow \mu \mu, h \rightarrow \gamma Z$
M.L. Mangano, Washington '15
θ Higgs flavor violating couplings: $\mathrm{h} \rightarrow \mu \tau$ and $t \rightarrow \mathrm{hc}$
* Higgs CP violating couplings
exclusive Higgs decays (e.g. $h \rightarrow J / \Psi+\gamma$) and measurement of couplings to light quarks
B exotic Higgs decay channels:
$h \rightarrow \not{ }^{\prime}, h \rightarrow 4 b, h \rightarrow 2 b 2 \mu, h \rightarrow 4 \tau, 2 \tau 2 \mu, h \rightarrow 4 j, h \rightarrow 2 \gamma 2 j, h \rightarrow 4 \gamma, h \rightarrow \gamma / 2 \gamma+\not{ }^{\prime} / T$,

* searches for extended Higgs sectors ($H, A, H^{ \pm}, H^{ \pm \pm} \ldots$)

Higgs self-coupling(s)

* Higgs width

Higgs/axion coupling?

Higgs Portrait

Higgs physics vs BSM

Several deformations away from the SM affecting Higgs properties are already probed in the
(assuming EW symmetry linearly realized and that new physics is heavy)
$\phi=v+h$
vacuum

Potentially new BSM-effects in h physics could have been already tested in the vacuum

Modifications in $\mathrm{h} \rightarrow \mathrm{Zff}$ related to $\mathrm{Z} \rightarrow \mathrm{ff}$
consistency check not discovery mode

One can use $h \rightarrow Z Z \rightarrow 4$ to probe this deformation but hard time to compete with LEP bounds

Higgs/BSM Primaries

There are others deformations away from the SM that are harmless in the vacuum and need a Higgs field to be probed

$$
\text { e.g. } \frac{1}{g_{s}^{2}} G_{\mu \nu}^{2}+\frac{|H|^{2}}{\Lambda^{2}} G_{\mu \nu}^{2} \rightarrow\left(\frac{1}{g_{s}^{2}}+\frac{v^{2}}{\Lambda^{2}}\right) G_{\mu \nu}^{2} \begin{gathered}
\text { operator } \\
\text { is not visible in } \\
\text { the vacuum }
\end{gathered}
$$

But can affect h physics:

$$
\text { affects GG } \rightarrow h!
$$

Higgs/BSM Primaries

How many of these effects can we have?

As many as parameters in the SM: 8

$\mathrm{g}_{\text {s }}$	$\|H\|^{2} G_{\mu \mu}^{A} G^{A \mu \nu}$	\longrightarrow GGh coupling
g	$\left\|\|H\|^{2} B_{\mu \nu} B^{\mu \nu}\right.$	\longrightarrow hyy coupling $\quad \begin{gathered}\text { yet to be measured } \\ \text { at the LHC }\end{gathered}$
g^{\prime}	$\|H\|^{2} W_{\mu \nu}^{a} W^{\mu \nu a}$	$\longrightarrow \mathrm{hZY}$ coupling ${ }^{\text {a }}$
m_{W}	$\|H\|^{2}\left\|D_{\mu} H\right\|^{2}$	$\longrightarrow \quad \mathrm{hVV}$ * (custodial invariant)
m_{h}	$\|H\|^{6} \mid$	$\longrightarrow \mathrm{h}^{3}$ coupling
$\underset{(\mathrm{f}=\mathrm{t}, \mathrm{~b}, \tau)}{\mathrm{m}_{\mathrm{f}}}$	$\left\|\|H\|^{2} \bar{f}_{L} H f_{R}+h\right.$	$\begin{gathered} \text { h.c. } \longrightarrow \operatorname{htt}, \mathrm{hbb}, \mathrm{~h} \tau \tau \\ \text { the } 6 \text { others have been measured (} \sim 15 \%) \end{gathered}$

Higgs/BSM Primaries
 How many of these effects can we have?

Almost a 1-to-1 correspondence with the 8 к's in the Higgs fit

Coupling	$\begin{aligned} & 300 \mathrm{fb}^{-1} \\ & \text { Theory unc.: } \end{aligned}$			$3000 \mathrm{fb}^{-1}$ Theory unc.:		
	All	Half	None	All	Half	None
κ_{Z}	8.1\%	7.9\%	7.9\%	4.4\%	4.0\%	3.8\%
κ_{W}	9.0\%	8.7\%	8.6\%	5.1\%	4.5\%	4.2\%
κ_{t}	22\%	21\%	20\%	11\%	8.5\%	7.6\%
κ_{b}	23\%	22\%	22\%	12\%	11\%	10\%
κ_{τ}	14\%	14\%	13\%	9.7\%	9.0\%	8.8\%
κ_{μ}	21\%	21\%	21\%	7.5\%	7.2\%	7.1\%
κ_{g}	14\%	12\%	11\%	9.1\%	6.5\%	5.3\%
κ_{γ}	9.3\%	9.0\%	8.9\%	4.9\%	4.3\%	4.1\%
$\kappa_{Z \gamma}$	24\%	24\%	24\%	14\%	14\%	14\%

Atlas projection
With some important differences:

1) width hypothesis built-in
2) $\kappa w / \kappa z$ is not a primary (constrained by $\Delta \rho$ and TGC)
3) $\kappa_{g}, \kappa_{\gamma}, \kappa_{Z \gamma}$ do not separate UV and IR contributions

Azatov '15
up to a flat direction between between the top/gluon/photon couplings

Why going beyond inclusive Higgs processes?

So far the LHC has mostly produced Higgses on-shell in processes with a characteristic scale $\mu \approx \mathrm{m}_{\mathrm{H}}$
access to Higgs couplings @ m_{H}

Why going beyond inclusive Higgs processes?

So far the LHC has mostly produced Higgses on-shell in processes with a characteristic scale $\mu \approx \mathrm{m}_{\mathrm{H}}$ access to Higgs couplings @ m_{H}

Producing a Higgs with boosted additional particle(s) probe the Higgs couplings @ large energy
(important to check that the Higgs boson ensures perturbative unitarity)

Examples of interesting channels to explore further:

1. off-shell $\mathrm{gg} \rightarrow \mathrm{h}^{\star} \rightarrow \mathrm{ZZ} \rightarrow 4 \mathrm{I}$
2. boosted Higgs: Higgs+ high-рт jet
3. double Higgs production

Why going beyond inclusive Higgs processes?

So far the LHC has mostly produced Higgses on-shell in processes with a characteristic scale $\mu \approx \mathrm{m}_{\mathrm{H}}$

Usefulness of non-inclusive measurements

In Higgs inclusive measurements, top partners easily hide themselves lightness of the Higgs makes it impossible to resolve the top-loop top partners run in the loop and modify top Yukawa couplings \Rightarrow net effect=0

> o long distance physics (modified top coupling)
:cannot disentangle o short distance physics (new particles running in the loop)

$$
\begin{aligned}
\mathcal{L} & =\frac{\alpha_{s} c_{g}}{12 \pi}|H|^{2} G_{\mu \nu}^{a 2}+\frac{\alpha c_{\gamma}}{2 \pi}|H|^{2} F_{\mu \nu}+y_{t} c_{t} \bar{q}_{L} \tilde{H} t_{R}|H|^{2} \\
\frac{\sigma(g g \rightarrow h)}{\mathrm{SM}} & =\left(1+\left(c_{g}-c_{t}\right) v^{2}\right)^{2} \quad
\end{aligned}
$$

fermionic top-partners in composite Higgs models exactly lead to $\Delta c_{t}=\Delta c_{g}=\frac{9}{4} \Delta c_{\gamma}$

MCHM 5, $\xi=0.1$
Need to look at differential distributions

Higgs and BSM physics

Higgs \& BSM: a love story

In the context of the SM, there is nothing more to learn from the Higgs

- This is a blessing and a curse:
- A curse, since we might spend the rest of our lives confirming what we already know
- A blessing, since we now have all ingredients required to assess the (in)consistency of exptl data with the SM itself
_-Two extreme BSM scenarios...
- EWSB is intrinsically BSM (e.g. composite Higgs)
- Higgs properties are directly modified
- EWSB is basically SM, it is not affected by BSM
- Higgs properties are not visibly modified, but BSM particles manifest themselves through the Higgs (e.g. $\mathrm{X}_{2} \rightarrow \mathrm{~h} \mathrm{X}_{1}$)
- ... plus every scenario in between

This makes Higgs physics immensely rich, diverse and challenging

Higgs \& BSM: a love story

There are many ways to look for BSM physics in the Higgs sector...
Neutral heavy Higgs

Higgs couplings as a test of naturalness

$$
\begin{gathered}
\frac{g_{s}^{2} g_{*}^{2}}{16 \pi^{2}} \frac{1}{m_{*}^{2}}|H|^{2} G_{\mu \nu}^{2} \quad \frac{e^{2} g_{*}^{2}}{16 \pi^{2}} \frac{1}{m_{*}^{2}}|H|^{2} F_{\mu \nu}^{2} \\
\frac{\Delta B R(h \rightarrow \gamma \gamma, Z \gamma, g g)}{\mathrm{SM}} \sim \frac{g_{*}^{2} v^{2}}{m_{*}^{2}}
\end{gathered}
$$

$$
\frac{g_{*}^{2}}{16 \pi^{2}} \frac{1}{m_{*}^{2}}\left(\partial_{\mu}|H|^{2}\right)^{2}
$$

$$
: B R(h \rightarrow i i)=B R_{\mathrm{SM}} \quad \Gamma=\left(1-\frac{g_{*}^{2} v^{2}}{16 \pi^{2} m_{*}^{2}}\right) \Gamma_{\mathrm{SM}}:
$$

$$
\delta \sigma_{Z h}=-\frac{g_{\star}^{2}}{8 \pi^{2}} \frac{v^{2}}{m_{\star}^{2}}
$$

Colorful naturalness probed @ LHC Neutral naturalness (invisible?) @ LHC

Searching for the missing top partners

"Looking and not finding is different than not looking" giving the null search results, the top partners should either be
-heavy (harder to produce because of phase space) sstealthy (easy to produce but hard to distinguish from background, e.g. $m_{\text {stop }} \sim m_{\text {top }}$) -colorless (hard to produce, unusual decay)

	Scalar Fermion Top Partner Top Partner	
All SM Charges	SUSY	pNGB/RS
EW Charges	Folded SUSY	Quirky Little Higgs
No SM Charges	???	Twin Higgs

need to go beyond traditional searches
require hidden QCD with a higher confining scale:
 \Rightarrow 2) emerging jets

Top partners in Composite Higgs models

top partners searches in composite models:

Search in same-sign dilepton events

tt+jets is not a background [except for charge mis-ID and fake e^{-}]
The resonant (tw) invariant mass can be reconstructed

[Contino, Servant '08]

Top partners in Composite Higgs models

- $\ell^{ \pm}+4$ b final state ${ }^{\text {Aguilar-Saavedra '09 }}$

$$
\begin{array}{ll}
T \bar{T} \rightarrow H t W^{-} \bar{b} \rightarrow H W^{+} b W^{-} \bar{b} & H \rightarrow b \bar{b}, W W \rightarrow \ell \nu q \bar{q}^{\prime}, \\
T \bar{T} \rightarrow H t V \bar{t} \rightarrow H W^{+} b V W^{-} \bar{b} & H \rightarrow b \bar{b}, W W \rightarrow \ell \nu q \bar{q}^{\prime}, V \rightarrow q \bar{q} / \nu \bar{\nu}
\end{array}
$$

- $\ell^{ \pm}+6 \mathrm{~b}$ final state Aguilar-Saavedra'09

$$
T \bar{T} \rightarrow H t H \bar{t} \rightarrow H W^{+} b H W^{-} \bar{b} \quad H \rightarrow b \bar{b}, W W \rightarrow \ell \nu q \bar{q}^{\prime}
$$

- $\gamma \gamma$ final state

Azatov et al ' 12
thbW/thtZ/thth, $h \rightarrow \gamma \gamma$

- $\ell^{ \pm}+4 b$ final state vignaroli ‘ 12

$$
p p \rightarrow(\tilde{B} \rightarrow(h \rightarrow b b) b) t+X
$$

1505.04306

(*) Not a combination. Only most restrictive individual bounds shown.
1509.04177

Evading EXP bounds

the stringent bounds from ATLAS/CMS on susy/composite models force theorists to go beyond minimal/simple models

SUSY is Natural but not plain vanilla

CMSSM

mMSSM
NMSSM
Hide SUSY, e.g. smaller phase space - reduce production (eg. split families)

Mahbubani et al

- reduce MET (e.g. R-perity, compressed spectrum)

Csaki et al

- dilute MET (decay to invisible particles with more invisible particles)
- Soften MET (stealth susy, stop -top degeneracy)
composite models involving top partners with really exotic charges

"Hyperfolded Composite Higgs"

or how to get spin-1/2 partners with unconventional charges

Symmetry breaking pattern:

$$
\begin{aligned}
& \mathrm{SU}(3)_{G} \times \mathrm{SU}(2)_{X} \times \mathrm{U}(1)_{Z} \rightarrow \mathrm{SU}(2)_{L} \times \mathrm{SU}(2)_{X} \times \mathrm{U}(1)_{Y} \\
& \Phi \sim(\overline{3}, 1)_{\frac{1}{3}}=\exp \left(-i \frac{\pi^{a} T_{G}^{a}}{f}\right)\left(\begin{array}{l}
0 \\
0 \\
f
\end{array}\right) \approx\binom{H}{f-\frac{H^{\dagger} H}{2 f}}
\end{aligned}
$$

SM electroweak group generators:

$$
T_{L}^{1,2,3}=T_{G}^{1,2,3} \quad Y=Z-\frac{T_{G}^{8}}{\sqrt{3}}+\left(\frac{2}{3}-Y_{T}\right) T_{X}^{3}
$$ the top-partner hypercharge

Since the charge- Y_{T} partner does not mix with the SM quarks,
the usual decays to $\mathrm{W} / \mathrm{Z} / \mathrm{h}+$ quark are absent.
Instead, the decay may proceed via a higher-dimensional operator.
For example, the operator

$$
\mathcal{L} \propto \bar{X}_{\alpha}^{\dagger} \bar{u}_{i \beta}^{\dagger} \bar{d}_{j}^{\alpha} \bar{d}_{k}^{\beta}+\text { h.c. }
$$

may give the potentially elusive decays

$$
X \rightarrow j j j, t j j
$$

Status of SUSY model building

Supersymmetry in light of data:

Impossible to have a simple theory that is natural, unifies, and gives WIMP DM.

Picking two is a useful guide.

Status of SUSY model building

Naturalness \& Unification

- Light-flavor UDD RPV, LQD w/ taus
- RPV Higgsino
- <Your idea here>

Naturalness \&
Dark Matter

- Additional states near weak scale (sgluon, KK resonances, ...)
- Higgs properties
- <Your idea here>

Unification \& Dark Matter

- Conventional split SUSY searches
- Pure wino, higgsino LSP
- Extended Higgs sector?
- <Your idea here>

Figs \& New Physics (Vectors)

Precision /indirect searches (high lumi.) vs. direct searches (high energy)
typical mass scale $M=g^{\star} f$

EW scale $v=246 \mathrm{GeV}$
g, g^{\prime}, y_{+}

- Precision Higgs study: $\xi \equiv \frac{\delta g}{g}=\frac{v^{2}}{f^{2}}$
- Direct searches for resonances: $m_{\rho} \approx g_{*} f$

LHC direct search

Higgs \& New Physics (Vectors)

Precision /indirect searches (high lumi.) vs. direct searches (high energy)

Mass reach:
a deviation in Higgs couplings also teaches us on the Higgs couplings maximum mass scale to search for!
e.g. 10% deviation $\Rightarrow m_{v}<10 \mathrm{TeV}$ i.e. resonance within the reach of FCC-hh

Higgs \& New Physics (Vectors)

Precision /indirect searches (high lumi.) vs. direct searches (high energy)

Torre, Thamm, Wulzer '15

DY production xs of resonances decreases as $1 / g_{\rho}{ }^{2}$

Higgs \& New Physics (Vectors)

Precision /indirect searches (high lumi.) vs. direct searches (high energy)

Torre, Thamm, Wulzer '15

Collider	Energy	Luminosity	$\xi[1 \sigma]$
LHC	14 TeV	$300 \mathrm{fb}^{-1}$	$6.6-11.4 \times 10^{-2}$
LHC	14 TeV	$3 \mathrm{ab}^{-1}$	$4-10 \times 10^{-2}$
ILC	$\begin{array}{r} 250 \mathrm{GeV} \\ +500 \mathrm{GeV} \end{array}$	$\begin{aligned} & 250 \mathrm{fb}^{-1} \\ & 500 \mathrm{fb}^{-1} \end{aligned}$	$4.8-7.8 \times 10^{-3}$
CLIC	$\begin{aligned} & 350 \mathrm{GeV} \\ + & 1.4 \mathrm{TeV} \\ + & 3.0 \mathrm{TeV} \end{aligned}$	$\begin{aligned} & 500 \mathrm{fb}^{-1} \\ & 1.5 \mathrm{ab}^{-1} \\ & 2 \mathrm{ab}^{-1} \end{aligned}$	2.2×10^{-3}
TLEP	$\begin{array}{r} 240 \mathrm{GeV} \\ +350 \mathrm{GeV} \end{array}$	$\begin{aligned} & 10 \mathrm{ab}^{-1} \\ & 2.6 \mathrm{ab}^{-1} \end{aligned}$	2×10^{-3}

complementarity:

\rangle direct searches win at small couplings

- indirect searches probe new territory at large coupling
e.g.
indirect searches at LHC over-perform direct searches for $g>4.5$

indirect searches at ILC over-perform direct searches at HL-LHC for $g>2$

Higgs \& New Physics (Vectors)

Precision /indirect searches (high lumi.) vs. direct searches (high energy)

Torre, Thamm, Wulzer '15

Collider	Energy	Luminosity	$\xi[1 \sigma]$
LHC	14 TeV	$300 \mathrm{fb}^{-1}$	$6.6-11.4 \times 10^{-2}$
LHC	14 TeV	$3 \mathrm{ab}^{-1}$	$4-10 \times 10^{-2}$
ILC	$\begin{array}{r} 250 \mathrm{GeV} \\ +500 \mathrm{GeV} \end{array}$	$\begin{aligned} & 250 \mathrm{fb}^{-1} \\ & 500 \mathrm{fb}^{-1} \end{aligned}$	$4.8-7.8 \times 10^{-3}$
CLIC	$\begin{aligned} & 350 \mathrm{GeV} \\ + & 1.4 \mathrm{TeV} \\ + & 3.0 \mathrm{TeV} \end{aligned}$	$\begin{aligned} & 500 \mathrm{fb}^{-1} \\ & 1.5 \mathrm{ab}^{-1} \\ & 2 \mathrm{ab}^{-1} \end{aligned}$	2.2×10^{-3}
TLEP	$\begin{array}{r} 240 \mathrm{GeV} \\ +350 \mathrm{GeV} \end{array}$	$\begin{aligned} & 10{a b^{-1}}_{2.6 a b^{-1}} \end{aligned}$	2×10^{-3}

complementarity:

Δ direct searches win at small couplings

- indirect searches probe new territory at large coupling

e.g.
indirect searches at LHC over-perform direct searches for $g>4.5$
indirect searches at ILC over-perform direct searches at HL-FCChh for $g>6$

Higgs \& New Physics: Summary

Top Partner Searches:

- strongly connected with tuning
- however light Top Partners avoided in peculiar "Twin Higgs" models

Vector Searches:

- less directly related to tuning (but still, higher mass-reach ...)
- apply to broader class of comp. models (TC, TH, W-comp.)

Higgs Couplings:

- very model-independent and very strong.
- part of a broad ("SM") exploration program
- slow progresses at run-2

Energy and Accuracy:

- W and Y as a proof of concept
- also a way to do EWPT@LHC!!
- looking for other channels with similar performances. Diboson?

BSM Higgs couplings: Baryogenesis

EW scale flavons for EW baryogenesis

Electroweak baryogenesis requires:

- A strong first order phase transition
- Sufficient CP violation

However in the SM:

- The Higgs mass is too large
- Quark masses are too small

This negative result is tied to the fact that
Yukawa couplings during EW phase transition are identical the ones afterwards
What if they were larger?
E.g. flavor structure emerges during the EW transition

$$
y_{i j} \bar{f}_{L}^{i} H f_{R}^{j} \quad \Rightarrow \quad y_{i j}\left(\frac{\chi}{M}\right)^{q_{H}+q_{j}-q_{i}} \bar{f}_{L}^{i} H f_{R}^{j}
$$

traditionally, $M \gg$ and χ is frozen during EWSB
lowering M and allowing χ to vary leads to totally different phenomenology

EW scale flavons for EW baryogenesis

$$
y(\phi)= \begin{cases}y_{1}\left(1-\left[\frac{\phi}{v}\right]^{n}\right)+y_{0} & \text { for } \phi \leq v \\ y_{0} & \text { for } \phi \geq v\end{cases}
$$

The evolution of the effective potential with temperature in the SM (left) and with varying Yukawas (right) The varying Yukawa calculation includes all SM fermions with $\mathrm{y} 1=1, \mathrm{n}=1$ and their respective y 0 , chosen to return the observed fermion masses today (the neutrinos are assumed to have a Dirac $\mathrm{m}=0.05 \mathrm{eV}$).

In the varying Yukawa case, there is a first-order phase transition with $\phi_{\mathrm{c}}=230 \mathrm{GeV}$ and $\mathrm{Tc}=128 \mathrm{GeV}$ (vs. second order transition at $\mathrm{Tc}=163 \mathrm{GeV}$ for the constant Yukawa case).

1st order phase transition + enhanced source of CP

Fun with GW: stochastic GW background from phase transitions

The pictures of 2016

GW150914

what does it teach us?

O never give up against strong background when you know you are right
O $m_{g}<10^{-22} \mathrm{eV} \quad\left(c_{g}-c_{\gamma}<10^{-17}\right.$. GRB observed together with $G \mathrm{~W}$ with the same origin?)
O no spectral distortions: scale of quantum gravity > 100 keV

GW and the ElectroWeak Phase Transition

GW interact very weakly and are not absorbed direct probe of physical process of the very early universe possible cosmological sources:
inflation, vibrations of topological defects, excitations of xdim modes, $1^{\text {st }}$ order phase transitions...
ElectroWeak Phase Transition (if $1^{\text {st }}$ order) typical freq. $\sim(\text { size of the bubble })^{-1} \sim(\text { fraction of the horizon size })^{-1}$

$$
@ T=100 \mathrm{GeV}, \quad H=\sqrt{\frac{8 \pi^{3}}{45} \frac{T^{2}}{M_{P l}} \sim 10^{-15} \mathrm{GeV}}
$$

$r+\theta^{h} d A^{n}$

$$
f \sim \# \frac{2 \cdot 10^{-4} \mathrm{eV}}{100 \mathrm{GeV}} 10^{-15} \mathrm{GeV} \sim \# 10^{-5} \mathrm{~Hz}
$$

The GW spectrum from a $1^{\text {st }}$ order electroweak PT is peaked around the milliHertz frequency

Why should you be excited about $m H Z$ freq.?
$\Omega_{\mathrm{cw}} \mathrm{h}^{2}$

- test of the dynamics of the phase transition
(quite important to analyze models of EW baryogenesis!)
redshift
$\Omega_{G W}^{\star} \square \Omega_{G W}=\left(\frac{a_{\star}}{a_{0}}\right)^{4}\left(\frac{H_{\star}}{H_{0}}\right)^{2} \Omega_{G W}^{\star} \sim 2 \cdot 10^{-5} h^{-2}\left(\frac{100}{g_{\star}}\right)^{1 / 3} \Omega_{G W}^{\star}$

$$
H_{0} \sim h \times 2 \cdot 10^{-42} \mathrm{GeV}
$$

Hunting for phase transitions with GW

P. Schwaller ' 15

Figure 3: GW spectra $\Omega(f) h^{2}$ for $T_{*}=0.1 \mathrm{GeV}$ (SIMP), $T_{*}=3 \mathrm{GeV}$ (CDM1, TH models), $T_{*}=300 \mathrm{GeV}$ and $T_{*}=10 \mathrm{TeV}$ (CDM2 models). The upper (lower) edges of the contours correspond to $\beta=\mathcal{H}(\beta=10 \mathcal{H})$, and furthermore $v=1$ and $\Omega_{S *}=0.1$ for all curves. The red band $T_{*}=0.1 \mathrm{GeV}$ indicates where a signal of the QCD PT would lie if it was strong. The projected reach of several planned GW detection experiments is shown (dashed).

Naturalness without TeV-scale New Physics: relax!

The Darwinian solution to the Hierarchy

Other origin of small/large numbers according to Weyl and Dirac: hierarchies are induced/created by time evolution/the age of the Universe

Can this idea be formulated in a QFT language?
In which sense is it addressing the stability of small numbers at the quantum level?
Graham, Kaplan, Rajendran '15
Higgs mass-squared promoted to a field
Espinosa et al '15
The field evolves in time in the early universe and scans a vast range of Higgs mass
The Higgs mass-squared relaxes to a small negative value - The electroweak symmetry breaking stops the time-evolution of the dynamical system

Self-organized criticality

dynamical evolution of a system is stopped at a critical point due to back-reaction
hierarchies result from dynamics not from symmetries anymore! important consequences on the spectrum of new physics

Higgs-axion cosmological relaxation

Graham, Kaplan, Rajendran '15
ϕ slowly rolling field (inflation provides friction) that scans the Higgs mass

$$
\begin{gathered}
\Lambda^{2}\left(-1+f\left(\frac{g \phi}{\Lambda}\right)\right)|H|^{2}+\Lambda^{4} V\left(\frac{g \phi}{\Lambda}\right)+\frac{1}{32 \pi^{2}} \frac{\phi}{f} \tilde{G}^{\mu \nu} G_{\mu \nu} \\
\text { Higgs mass } \\
\text { potential needed to force }
\end{gathered}
$$

depends on ϕ
ϕ to roll-down in time (during inflation)

Higgs-axion cosmological relaxation

Graham, Kaplan, Rajendran '15

If ϕ continues rolling, the Higgs vev increases, the potential barrier increases and ultimately prevents ϕ from rolling down further

Higgs-axion cosmological relaxation

Hierarchy problem solved
by light weakly coupled new physics and not by TeV scale physics
~interesting cosmology signatures~ - BBN constraints

- decaying DM signs in γ-rays background
ALPs
- superradiance
~interesting signatures @ SHiP~ o production of light scalars by B and K decays

Phenomenological signatures

Nothing to be discovered at the LHC/ILC/CLIC/CepC/SppC/FCC!
only BSM physics below Λ
two (very) light and very weakly coupled axion-like scalar fields

$$
\begin{gathered}
m_{\phi} \sim\left(10^{-20}-10^{2}\right) \mathrm{GeV} \\
m_{\sigma} \sim\left(10^{-45}-10^{-2}\right) \mathrm{GeV}
\end{gathered}
$$

interesting signatures in cosmology

Conclusions

Conclusions: Executise Summary

The LHC leaves us with the deepest mathematical pb:
Dissertori, ECFA '13

The Higgs boson is the Santa Maria of the 21st century: understanding the scalar sector of the SM will help us grasping what lays beyond the SM

We also need the right technological tool (SHiP, ILC, CLIC, CepC, FCC...) to continue exploring the unknown

