Indirect Searches for WIMP Dark Matter

Hiroyasu Tajima Institute for Space-Earth Environmental Research, Nagoya University

January 9–11, 2017 Physics in LHC and the Early Universe University of Tokyo, Japan

- * Introduction
- * WIMP searches with Fermi-LAT

Outline

- * "Galactic Center Excess"
- * Dwarf Spheroidal
- * WIMP search in TeV gamma rays
- * WIMP searches with cosmic rays
- * Future prospects

* What we know

- * Dark matter exists
 - Orbital velocities of stars in galaxies, velocity dispersions of galaxies in clusters, temperature distribution of hot gas in clusters of galaxies and gravitational lensing

Dark Matter

- * Non-relativistic ("cold dark matter")
- * ~6 x ordinary matter
- * What we don't know
 - * What is dark matter?
 - MACHO: constrained by micro-lensing 2
 - WIMP
 - Weak scale new particles happen to have suitable mass and cross-section
 - Axion WIMP miracle

* Accelerator production

- * Exhaustive searches can be made for specific mode and mass range as far as WIMP has coupling to quarks
- * Mass reach is heavily model dependent
- * Direct detection of WIMP scattering
 - * Wide mass coverage
 - Sensitivity limit due to neutrino backgrounds

Indirect detection of WIMP annihilation

SM * "Direct" constraints on annihilation cross section **Production** particle Sensitivity is less model dependent WIMP * Large systematics due to astrophysics particle physics

$$\frac{d\Phi_{\gamma}}{dE_{\gamma}}(E_{\gamma},\phi$$

$$\times \int_{\Delta\Omega \ (\phi,\theta)} d\Omega' \int_{Ios} \rho^2(r(I,\phi')) dI(r,\phi')$$

DM distribution

Annihilatio

* Those approaches are complimentary

* Different model dependences and sensitivity phase space

Scattering

SM

particle

- WIMP is in equilibrium between pair creation and annihilation in early Universe
 - * Pair creation stops when thermal energy is not sufficient
 - Annihilation continues and WIMP density become too low compared with annihilation cross section
 - WIMP density and annihilation cross section is anti-correlated
 - * Current dark matter density (Ω_{DM}) constrains annihilation cross section to ~3x10⁻²⁶ cm²/s

Fermi "Galactic Center Excess"

Physics in LHC and the Early Universe, JAN 9–11 2017, University of Tokyo

Fermi "Galactic Center Excess"

Physics in LHC and the Early Universe, JAN 9-11 2017, University of Tokyo

Fermi "Galactic Center Excess"

Physics in LHC and the Early Universe, JAN 9–11 2017, University of Tokyo

Publication	Data set	Galactic diffuse model	m _{DM} (GeV/ <i>c</i> ²) (for bb pair)	<σv> (10 ⁻²⁶ cm ³ /s) (for bb pair)
2014PhRvD. .89f3515M	Pass 7, 45 months, Ibl<3.5°, Iℓl<3.5°	Fermi/LAT p7v6 + HI gas (20 cm)	29±9	2.0±0.6
2014PhRvD. .90b3526A	Pass 7, 57 months, Ibl<3.5°, Iℓl<3.5°	HI gas (20 cm) + "new diffuse"	39.4±7.9	5.1±2.1
2016PDU 121D	Pass 7, 64 months, 1 <ibl<20°, iℓi<20°<="" td=""><td>Fermi/LAT <mark>p6v11</mark> + Fermi Bubbles</td><td>~35.5</td><td>~3.0</td></ibl<20°,>	Fermi/LAT <mark>p6v11</mark> + Fermi Bubbles	~35.5	~3.0
	Pass 7, 64 months, Ibl<5°, Iℓl<5°	Fermi/LAT p7v6 + HI gas (20 cm)	35.5±4.5	3.0±0.5
2015JCAP 03038C	Pass 7, 64 months, 2 <ibi<20°, iℓi<20°<="" td=""><td>HI&H₂ gas + Inverse Compton</td><td>49±6</td><td>1.8±0.3</td></ibi<20°,>	HI&H ₂ gas + Inverse Compton	49±6	1.8±0.3

* Fermi/LAT diffuse model is NOT intended for diffuse analysis

- * "All the released diffuse models were derived for point sources and compact extended sources studies only, and are not suited for studies of extended sources and/or large-scale diffuse emissions."
- * "Each diffuse model should be used with the corresponding Event Selection and IRF." Acero, F. et al. 2016, ApJS, 223, 26

- * Most analyses use wrong Galactic diffuse models
 - * Some authors are aware of caveat from the LAT team
- * Uncertainties in cosmic-ray propagation in the Galprop model
 - * Assumptions
 - Homogeneity and isotropy of cosmic-ray diffusion and re-acceleration
 - Radial symmetry of cosmic-ray source distribution: ignore spiral arms
 - Same spatial distribution of hadronic and leptonic cosmic-ray sources
- * Unknown contributions from undetected gamma-ray sources
 - * Spectrum of Calore+ is not necessarily compatible with dark matter spectrum
 - slow rise below the peak
 - no clear cutoff above 10 GeV

* Excess is not limited to Galactic Center

* Excess is not limited to Galactic Center

* Detailed modeling of Galactic diffuse emissions

Fixed in fit

Units: MeV⁻¹ cm⁻² s⁻¹ sr⁻¹

* Point sources are detected from scratch with new diffuse model

- * IEM (contributions from r>4 kpc) is dominant
- IC emission for ring 1 is brighter than the gas emission and larger (6–30x) than predicted from Galprop model
 - * Higher intensity of interstellar radiation field, higher cosmic-ray lepton intensities and/or undetected sources
- * Adding WIMP component does not eliminate residual

- * IEM (contributions from r>4 kpc) is dominant
- IC emission for ring 1 is brighter than the gas emission and larger (6–30x) than predicted from Galprop model
 - * Higher intensity of interstellar radiation field, higher cosmic-ray lepton intensities and/or undetected sources
- * Adding WIMP component does not eliminate residual

- * IEM (contributions from r>4 kpc) is dominant
- IC emission for ring 1 is brighter than the gas emission and larger (6–30x) than predicted from Galprop model
 - * Higher intensity of interstellar radiation field, higher cosmic-ray lepton intensities and/or undetected sources
- * Adding WIMP component does not eliminate residual

- Many dwarf spheroidal galaxies (dSph) around our Galaxy
 dSphs are known to have large dark matter fraction (~100%)
 - * Negligible gamma-ray backgrounds from ordinary matter (few stars)

- * 15 dwarf spheroidals (dSphs) with 6 years of Fermi-LAT data
 * Selected based on distance, matter/light (M/L) ratio
- * New "pass 8" data set: >20% more acceptance, ~10% more FOV
- * Exclude up to ~80 GeV/ c^2 in $\tau^+\tau^-$, ~100 GeV/ c^2 in *bb* (and *uu*)

* 15 dwarf spheroidals (dSphs) with 6 years of Fermi-LAT data
* Selected based on distance, matter/light (M/L) ratio
* New "pass 8" data set: >20% more acceptance, ~10% more FOV
* Exclude up to ~80 GeV/c² in r⁺r⁻, ~100 GeV/c² in bb (and uu)

* 45 dSphs with 6 years of Fermi-LAT data

* 28 kinematically confirmed and 17 recently discovered dSphs

* No significant WIMP signal observed

arXiv: 1611.03184v1

* 45 dSphs with 6 years of Fermi-LAT data * 28 kinematically confirmed and 17 recently discovered dSphs * No significant WIMP signal observed

* 45 dSphs with 6 years of Fermi-LAT data
 * 28 kinematically confirmed and 17 recently discovered dSphs
 * No significant WIMP signal observed

Columba I Grus II Cetus II Draco II Grus I 10^{-6} s^{-1} 10^{-7} $\frac{1}{2}$ Flux (MeV cm⁻ Hydra II Horologium II Pegasus III Reticulum III Indus II 10^{-6} 10^{-7} Energy Triangulum II Sagittarius II Tucana III Tucana IV Tucana V 10^{-6} 10^{-7} 100 1010 10010100 10100 10 1001 1 1 1 1 Energy (GeV)

arXiv: 1611.03184v1

- Test statistic (TS=-2[InL-InL₀]) for each dSph as a function of WIMP mass show no coherent peak at a certain WIMP mass
 4 dSphs are inconsistent with null at 97.5% C.L.
- Combined TS with proper weighting by J-factors still has a peak (J-factor ∝ expected # of annihilation)
 - * This structure is reflected into the U.L. on the annihilation cross section

Physics in LHC and the Early Universe, JAN 9–11 2017, University of Tokyo

- Test statistic (TS=-2[InL-InL₀]) for each dSph as a function of WIMP mass show no coherent peak at a certain WIMP mass
 4 dSphs are inconsistent with null at 97.5% C.L.
- Combined TS with proper weighting by J-factors still has a peak (J-factor ∝ expected # of annihilation)
 - This structure is reflected into the U.L. on the annihilation cross section

- Test statistic (TS=-2[InL-InL₀]) for each dSph as a function of WIMP mass show no coherent peak at a certain WIMP mass
 4 dSphs are inconsistent with null at 97.5% C.L.
- Combined TS with proper weighting by J-factors still has a peak (J-factor ∝ expected # of annihilation)
 - This structure is reflected into the U.L. on the annihilation cross section

- Test statistic (TS=-2[InL-InL₀]) for each dSph as a function of WIMP mass show no coherent peak at a certain WIMP mass
 4 dSphs are inconsistent with null at 97.5% C.L.
- Combined TS with proper weighting by J-factors still has a peak (J-factor ∝ expected # of annihilation)
 - * This structure is reflected into the U.L. on the annihilation cross section

TeV WIMP Search in Galactic Center

- * H.E.S.S. Observations of Galactic center for 254 hours
 - Galactic diffuse BG in TeV band is relatively low compared with GeV band due to steep spectrum
 - * Local cosmic-ray electrons producing EM showers are dominant BG
 - * Uncertainties of WIMP density profile give large uncertainties

Physics in LHC and the Early Universe, JAN 9–11 2017, University of Tokyo

Information TeV WIMP Search in Galactic Center

- * H.E.S.S. Observations of Galactic center for 254 hours
 - Galactic diffuse BG in TeV band is relatively low compared with GeV band due to steep spectrum
 - * Local cosmic-ray electrons producing EM showers are dominant BG
 - Uncertainties of WIMP density profile give large uncertainties

- * AMS-02 observed positron spectrum which may peak at several 100 GeV
 - * These high energy electrons are expected to be produced locally since ~TeV electrons lose energies very quickly
 - * AMS suggested WIMP hypothesis
 - * Other astrophysical sources such as pulsars can also explain this spectrum
- AMS-02 also observed anti-proton spectrum which is similar to proton and positron spectra, but different from electron spectrum

*

- * AMS-02 observed positron spectrum which may peak at several 100 GeV
 - * These high energy electrons are expected to be produced locally since ~TeV electrons lose energies very quickly
 - * AMS suggested WIMP hypothesis
 - * Other astrophysical sources such as pulsars can also explain this spectrum
- AMS-02 also observed anti-proton spectrum which is similar to proton and positron spectra, but different from electron spectrum

- * AMS-02 observed positron spectrum which may peak at several 100 GeV
 - * These high energy electrons are expected to be produced locally since ~TeV electrons lose energies very quickly
 - * AMS suggested WIMP hypothesis
 - * Other astrophysical sources such as pulsars can also explain this spectrum
- AMS-02 also observed anti-proton spectrum which is similar to proton and positron spectra, but different from electron spectrum

Future Gamma-ray Observatory

SS

Energy E (TeV)

10

* Cherenkov Telescope Array (CTA) * Large number of telescopes • Large collection area (x~30) • Better angular resolution (0.03°) * Optimized telescope configuration • LST: ~23 m $\phi \times 4$, ~20 GeV – 200 GeV • MST: ~12 m $\phi \times 20$, ~100 GeV – 10 TeV • SST: ~4 m $\phi \times 70$, ~5 TeV – 300 TeV * ~1000 of TeV gamma-ray sources G. Pérez, IAC, SMM

- $* \sim$ an order of magnitude improvements expected up to 10 TeV/ c^2
 - * Fermi-LAT: increased statistics and more dwarf spheroids
 - New dwarf spheroids have been discovered due to improved detection techniques
 - Improved Galactic center analysis
 - * Cherenkov telescope: better sensitivities with CTA

- $* \sim$ an order of magnitude improvements expected up to 10 TeV/ c^2
 - * Fermi-LAT: increased statistics and more dwarf spheroids
 - New dwarf spheroids have been discovered due to improved detection techniques
 - Improved Galactic center analysis
 - * Cherenkov telescope: better sensitivities with CTA

- $* \sim$ an order of magnitude improvements expected up to 10 TeV/ c^2
 - * Fermi-LAT: increased statistics and more dwarf spheroids
 - New dwarf spheroids have been discovered due to improved detection techniques
 - Improved Galactic center analysis
 - * Cherenkov telescope: better sensitivities with CTA

- $* \sim$ an order of magnitude improvements expected up to 10 TeV/ c^2
 - * Fermi-LAT: increased statistics and more dwarf spheroids
 - New dwarf spheroids have been discovered due to improved detection techniques
 - Improved Galactic center analysis
 - * Cherenkov telescope: better sensitivities with CTA

- $* \sim$ an order of magnitude improvements expected up to 10 TeV/ c^2
 - * Fermi-LAT: increased statistics and more dwarf spheroids
 - New dwarf spheroids have been discovered due to improved detection techniques
 - Improved Galactic center analysis
 - * Cherenkov telescope: better sensitivities with CTA

- Indirect search is one of complimentary approaches in WIMP dark matter studies
- Fermi-LAT "Galactic Center Excess" is intriguing, but premature to draw any conclusions
- * Fermi-LAT exludes thermal relic WIMP for the mass below 80–100 GeV/c²
 - * Excluded mass range would extend to multi-100 GeV/c² in the future with longer observations with more targets
- * CTA is a promising project to search for WIMP in TeV energy band
 - * Excluded mass range would extend to ~10 TeV/c²
 - Interesting mass range for some SUSY models
 - * CTA can access WIMP phase space where collider and direct searches cannot access

CTA Project Timeline

J-Factor is well correlated with the distance
 Comparison of three different method to estimate J-factors

